Геометрические параметры трубы и госты

Cортамент труб, материалы и области применения

Тема этой статьи — какие трубы можно купить и где их использовать. Сразу уточним: мы не станем затрагивать декоративные конструкции и мебельные каркасы.

Нас интересуют водо- и газопроводы, а раз так — связанный с ними сортамент труб круглых.

Из чего сейчас делают магистрали, водопроводы и системы газоснабжения? Рассмотрим наиболее популярные материалы.

Не будем покушаться на глобальное исследование: мы не затронем экзотику вроде меди, нержавейки или чугуна.

  • Сталь черная . Ее применение осмыслено лишь в газопроводах. Причина одна: коррозия;
  • Сталь оцинкованная . Прекрасный и прочный материал, защищенный от ржавчины цинковым покрытием. В недостатки можно записать разве что сравнительно трудоемкий монтаж сваркой или резьбовыми соединениями;
  • Металлополимерные трубы . Области их применения — системы водоснабжения, горячего и холодного.Ограничение по рабочей температуре не даст применить металлополимерные трубы для изготовления теплотрассы, а способ сборки соединений накладывает отпечаток на максимальный диаметр. Раз так — в магистралях ХВС металлопластик тоже не увидеть;
  • Полиэтилен . Только холодная вода и газ; зато любой размер. большого диаметра успешно применяются для магистралей водоснабжения в многих странах несколько десятилетий;
  • Полипропилен . Он успешно применяется во всех внутридомовых водопроводах и на горячей, и на холодной воде. Используют его и для магистралей ХВС; а вот на теплотрассы путь заказан. Опять-таки лимит по температуре.

В этом порядке и двинемся вперед.

Какую трубу считать малой — средней -большой?

Даже в серьезных источниках мне приходилось наблюдать фразы типа: «Берем любую трубу среднего диаметра и…», но какой этот средний диаметр никто не указывает.

Чтобы разобраться, стоит сначала понять на какой диаметр нужно ориентироваться: он может быть внутренним и внешним. Первый важен при расчете транспортировочной способности воды или газа, а второй для определения возможности выдерживать механические нагрузки.

Внешние диаметры:

  • От 426 мм считается большим;
  • 102-246 называют средним;
  • 5-102 классифицируется, как маленький.

Что касается внутреннего диаметра, то лучше заглянуть в специальную таблицу(см. выше).

Характеристики труб

Размерные характеристики труб

Дн — (наружный диаметр) — измеряется в миллиметрах и регламентируется ГОСТами.

Дв — (внутренний диаметр) — измеряется в миллиметрах, или вычисляется арифметически:

Дв = Дн — 2хS

где S — толщина стенки в миллиметрах.

DN, Ду — (диаметр условного прохода) — условная величина внутреннего диаметра в миллиметрах или в дюймах. Основная размерная характеристика водогазопроводных труб, соединительных частей к ним и запорной арматуры.

Длина трубы — зависит от диаметра трубы, способа изготовления и завода производителя.

Масса одного погонного метра стальной трубы — вычисляется по формуле, определенной из опытных данных:

М = 0,02466 x S x (Дн — S)

где М — масса одного метра погонного трубы в килограммах, Дн — наружный диаметр трубы в миллиметрах, S — толщина стенки в миллиметрах.

В зависимости от толщины стенок металлические трубы подразделяют на:

  • тонкостенные — с толщиной стенки до 3мм;
  • толстостенные — с толщиной стенки более 3 мм.

Характеристики труб по прочности

Прочность — способность конструкции сопротивляться разрушению под действием напряжений, возникающих при воздействии внешних сил и условий среды эксплуатации.

Рраб — (рабочее давление) — наибольшее давление транспортируемой среды при рабочей температуре, при котором обеспечивается длительная работа труб и элементов соединения.

PN — (номинальное давление) — постоянное внутреннее давление транспортируемой среды, которое трубы и соединительные детали могут выдерживать в течение всего срока эксплуатации при температуре воды 20 °C.

Ру — (условное давление) — максимальное избыточное давление при температуре 20 ˚С, при котором обеспечивается длительная работа трубопроводов и элементов соединения.

Рисп, Рпр — (испытательное или пробное давление). Прочность труб, соединительных частей и арматуры проверяют пробным (испытательным), которое больше рабочего давления.

Максимальная и минимальная рабочая температуры. Как правило рабочая температура транспортируемой среды значительно отличается от температуры 20 ˚С. Изменения температуры должны учитываться при проектировании трубопроводов и металлоконструкций, так как может оказывать разрушительное влияние на материал трубы.

Прочность характеристики труб указывают в ГОСТ-ах или иных нормативных документах на каждый вид изделия.

Особенности сортаментов

Все параметры профилей, и размеры, и геометрические характеристики: площадь, момент сопротивления, статический и осевой момент инерции представлены в виде таблиц. Данные взяты из актуальных ГОСТов. Таблицы имеют определенные полезные особенности. Предусмотрены функции группировки и фильтрации данных, а также они являются адаптивными к любому размеру экрана устройства. Поговорим о каждой особенности отдельно.

Группировка параметров

В таблицах, которые представлены на этой странице все параметры выведены на одном экране. Если перейдете на другие странички где перечислены параметры других профилей, то там вы заметите, что в каждой таблице выводится только часть строчек, между группами строчек можно переключаться с помощью кнопок, расположенных в правом нижнем углу таблицы. Сделано это для удобства просмотра информации, а также для уменьшения самой страницы.

Фильтрация информации

Как правило, при обращении к сортаменту, людей интересуют характеристики определенных профилей. Например, при расчете балки и определении минимально необходимого момента сопротивления, выбирается номер профиля, который удовлетворяет условию прочности и затем все параметры выписываются для дальнейших расчетов, проверки его по касательным напряжений, расчету на жесткость и т. д. Для удобства, в каждую таблицу встроен поиск, в который можно ввести уникальную характеристику профиля, например, я использую момент сопротивления, после чего таблица выдаст только одну – нужную строчку. Тем самым при переписывании данных профиля вы не будете отвлекаться на другие параметры и не ошибетесь.

Адаптивность

Для мобильных устройств: смартфонов, планшетов, в таблицах предусмотрена горизонтальная прокрутка данных. Это, конечно, не так удобно, как просмотр таблиц на ПК. Однако, других альтернатив нет, т. к. таблицы являются довольно широкими.

Технологии производства труб большого диаметра из полимеров

Диаметр стандартных полимерных труб, как правило, не превышает 110-250 миллиметров. Однако из полиэтилена и полипропилена можно изготовить и по-настоящему большую трубу. Причем и малогабаритное, тонкостенное изделие, и труба толстостенная большого диаметра, в данном случае, производится по одной и той же технологии – экструзии перегретого полимера сквозь профильный калибр.

Проще говоря, для производства больших пластмассовых труб нам нужно разогреть полуфабрикат до 260 градусов Цельсия и продавить пластичную массу сквозь калибрующее отверстие с помощью шнекового пресса. С помощью этого метода производят и полипропиленовые трубы диаметром (630-1200 мм), и полиэтиленовые изделия с максимальным диаметром до 1200 миллиметров, и даже 500-милиметровые трубы из поливинилхлорида.

Однако такие трубы можно использовать только в ординарных целях. А для изготовления  пластиковых трубопроводов магистрального типа применяется родственная технология сдвоенной соэкструзии. Этот технологический процесс предполагает одновременное   выдавливание из экструдера сразу двух слоев трубы: внешнего и внутреннего. Ну, а после соприкосновения и остывания до нормальной (комнатной) температуры  два слоя образуют практически монолитную стенку.

Преимущества габаритных труб из полимеров

С помощью сдвоенной соэкструзии полимеров мы можем получить очень прочные изделия с армирующей сеткой или гофрированной поверхностью. Причем прочность и кольцевая жесткость армированных труб из полимеров практически не уступает стальным аналогам. По такому трубопроводу можно прокачать любую жидкую или газообразную среду под давлением в десятки атмосфер.

В итоге, огражденные от возможного механического контакта полимерные трубы большого диаметра могут конкурировать со стальными изделиями. Причем стоимость полипропиленовых труб большого диаметра будет существенно ниже цены стальных изделий. Ведь и процесс прямой экструзии, и технология сдвоенной соэкструзии обходятся дешевле проката или сварного производства.

Стальные презиционные трубы: ГОСТ 9567-75 – основной документ, определяющий их сортамент

Прецизионные стальные трубы являются особым типом стальных изделий, которые отличаются высокой прочностью, надежностью, существенным износостойким ресурсом, стабильностью в восприятии любого рода нагрузок. Конструкция из данного материала проявляет устойчивость к различным внешним воздействиям. Стальные прецизионные трубы регламентируются отдельным ГОСТ 9567-75, поскольку изготовление изделий предполагает соблюдение особых мер и повышенной точности.

Стандартом предопределено несколько разновидностей прецизионных труб, которые классифицируются в зависимости от варианта изготовления и толщины стенки:

изделия, имеющие особо тонкие стенки;

Конструкция прецизионных стальных труб проявляет особую устойчивость к различным внешним воздействиям

  • тонкостенные трубы;
  • толстостенные изделия;
  • трубы с очень толстыми стенками.

Это бесшовный тип стальных изделий, характеризующихся высокими критериями изотропной жесткости. Благодаря этому трубы с очень тонкой стенкой могут использоваться при организации различных систем повышенной сложности и точности. Поверхность прецизионных труб бывает фосфаративной, оцинкованной или покрытой маслом.

В сортаменте на стальные бесшовные трубы ГОСТ строго прописывает размеры изделий, для которых не предусматриваются даже малейшие отклонения в значениях. Продукция изготавливается из высококачественного металла. Внутренняя поверхность имеет идеально ровную цилиндрическую форму. Диаметр трубы четко соблюден.

Обладая уникальными качественными характеристиками, данный тип изделий используется в гидравлических механизмах, автомобилестроении, энергетической промышленности, приборостроении, при монтаже газопроводов высокого давления.

Бесшовные прецизионные стальные изделия, характеризуются высокими критериями изотропной жесткости

Согласно ГОСТу горячекатаные трубы имеют мерную длину – 4-8 м, немерную – 4-12 м, холоднокатаные характеризуются мерной длиной 4,5-9 м, немерной – 1-11,5 м.

Способы формовки трубной заготовки

При производстве труб большого диаметра наибольшее распространение получили следующие способы формовки листа:

  • формовка листа в цилиндрическую заготовку на прессах, так называемый способ UOE;
  • формовка листа в цилиндрическую заготовку на вальцах;
  • постепенная формовка листа штампами;
  • пошаговая формовка листа узкими бойками.

Способ прессовой формовки листа UOE. Схема формовки показана на рис. 1. На валковом стане происходит загибка кромок листа по радиусу, соответствующему радиусу готовой трубы. На прессе предварительной формовки листу придают U-образную форму. Далее на прессе окончательной формовки в закрытых штампах листу придают цилиндрическую форму.

Рис. 1. Схема формовки трубной заготовки — UOE-процесс

Формовка листа на вальцах. В основу формовки на вальцах положена схема изгиба листа между тремя (рис. 2, а) или четырьмя валками (рис. 2, б). Для производства сварных труб чаще применяют четырехвалковые вальцы.

а б

Рис. 2. Схема формовки трубной заготовки на вальцах

В трехвалковых вальцах вращение передается только верхнему валку или также двум нижним. Верхний валок имеет диаметр в 1,3 …1,5 раза больше нижних. Его установкой относительно нижних валков регулируется диаметр формуемой заготовки. При формовке в трехвалковых вальцах у заготовки с краев остаются плоские участки, что является недостатком этого способа.

Установка для формовки в четырехвалковых вальцах имеет верхний и нижний приводные валки, два боковых прижимных валка. Формовка листа производится путем гибки между верхним и подвижными боковыми валками за несколько реверсивных движений (от 9 до 11). При этом боковые валки перемешаются в радиальном направлении к центру формуемого цилиндра. После формовки сформованный цилиндр стаскивается с верхнего валка. Для компенсации прогиба верхний валок выполнен профильным с максимальным диаметром в центре валка, а нижние валки имеют несколько опор по длине.

Преимуществом данного способа является возможность быстрой настройки на другой типоразмер труб, что делает эту технологию достаточно экономичной.

Способ постепенной формовки листа штампами. Для получения прямошовных труб большого диаметра применяют многопозиционную формовку на прессах, схема которой приведена на рис. 3. Формовка заготовки производится постепенным изгибом листа штампами, начиная с одной из его кромок.

За каждый ход пресса сравнительно узкий участок листа изгибается между верхним и нижним штампами. После каждой операции гибки следующий участок плоской заготовки подается в штампы пресса при помощи манипуляторов. Использование сменных штампов позволяет изготавливать трубы широкого сортамента, включая трубы с большим отношением S/D. Последнее обеспечивается использованием узких штампов.

Рис. 3. Схема постепенной формовки трубной заготовки штампами

Способ пошаговой формовки листа узкими бойками. Этот способ целесообразно использовать для изготовления особо толстостенных труб. Формовка листа осуществляется на формовочном прессе узкими бойками (рис. 4), которые обеспечивают ширину очага деформации, равную 1…1,5 толщины стенки. Поэтому по сравнению с технологией UOE не требуется применять гидропрессы с большими усилиями формовки. Другим преимуществом является то, что бойки одного и того же размера используются для изготовления широкого сортамента труб. Недостатком этого способа является его сравнительно низкая производительность.

Рис. 4. Схема пошаговой формовки трубной заготовки узкими бойками

Формовочный пресс имеет подвижную траверсу с верхним штампом. Траверса перемещается в вертикальной плоскости гидроцилиндрами. Нижние штампы закреплены в массивных опорах. Подача и фиксация заготовки в прессе осуществляется с помощью двух манипуляторов, расположенных с боковых сторон листа.

Сортамент труб, производимых указанными способами формовки, показан на рис. 5.

На ОАО «ЧТПЗ» установлено три линии по производству труб большого диаметра. Две линии ТЭСА «530–820» для производства труб с одним швом и линия ТЭСА «1020–1220» для производства труб с двумя продольными швами. Способ формовки — UOE-процесс. Третья линия — ТЭСА «530–1420», способ формовки — пошаговая формовка листа узкими бойками.

Рис. 5. Сортамент прямошовных труб при различных способах формовки

На ОАО «ВТЗ» прямошовные сварные трубы большого диаметра производятся в линии ТЭСА «530–1420» с применением способа формовки листа на вальцах.

На ЗАО «ИТЗ» прямошовные сварные трубы большого диаметра производятся в линии ТЭСА «530–1420» с применением способа пошаговой формовки листа узкими бойками.

На ОАО «ВМЗ» для производства труб большого диаметра установлено оборудование, аналогичное оборудованию ОАО «ЧТПЗ».

Диаметры стальных труб

Диаметр трубы по способу измерения разделяется на два вида — внутренний (условный диаметр (Ду, Dy) номинальный размер (в миллиметрах) и внешний (наружный диаметр). По внутреннему диаметру измеряются трубы водогазопроводные, по внешнему электросварные круглые и бесшовные.

Применение труб различных диаметров

В различных отраслях промышленности сегодня широко используются стальные трубы. К ним можно отнести:

  • бытовую;
  • химическую;
  • автомобильную;
  • пищевую;
  • сельскохозяйственную;
  • строительную и другие отрасли.

Прежде всего, такая популярность данного вида трубного проката обусловлена экономической выгодой. Основным отличием стальных труб друг от друга это способы производства, стали из которых изготавливают трубы, а так же диаметры и сечение.

Большое значение для любых работ связанных с использованием труб из стали имеет как внешний, так и внутренний диаметр. Главное принципиальное отличие между измерениями диаметра трубы, это то что внешний диаметр не зависит от толщины стенок, а внутренний зависит к примеры труба 108х3 имеет внешний диаметр 108 мм, а внутренний 102 мм, расчет 108 — (3*2) = 102 мм. Так же есть трубы водогазопроводные, которые измеряются по внутреннему диаметру и имеют следующие размеры ду 15х2,8, в данном случае все наоборот внутренний остается неизменным 15 мм, а внешний будет 20,6 мм, расчет 15 + (2,8*2) = 20,6 мм. Такие трубы изготавливаются по ГОСТу 3262-75 и имеют обозначение ДУ — диаметр условного прохода.

Диаметр труб считается важным, так как показатель служит опорой для проведения классификации изделий. Зная диаметры и толщину стальных труб можно, например, заранее просчитать их необходимое количество, для транспортировки какого – либо вещества по магистрали. И как следствие можно расчитать нагрузку на проектируемую систему, а также выявить слабые места и возможности их устранение.

Разновидности диаметров можно посмотреть в таблице стальных труб

Существующая стандартизация стальных труб необходима для осуществления стыковых соединений с использованием трубопроводной арматуры и четкого определения аналогов данной продукции, изготовленной из других материалов. Ведь соединение деталей из разного материала позволило расширить сферу применения трубопроводов в различных видах промышленности. Именно поэтому всегда значение диаметра металлической трубы должно совпадать, быть тоньше или толще с его соединительным элементом или ее полимерным аналогом, формируя при этом сложную систему. Это, например, дало возможность при масштабном проектировании разнообразнейших магистралей подбирать специалистами различные соединительные узлы.

Ведь если известны значения наружного и внутреннего диаметра, то подобрать необходимые элементы для соединения достаточно легко.

Диаметры стальных труб могут быть:

  • трубы с особо тонкими стенками -тонкостенные;
  • нормальные, усредненные конструкции — обычные;
  • изделия с тонкими стенками — тонкостенные;
  • элементы с толстыми стенками — толстостенные;
  • трубы с особо толстыми стенками — толстостенные.

Также диаметр и толщина стальной трубы заранее может предопределить сферу ее использования.

Стандартное обозначение диаметра труб

Труба электро сварная прямошовнfя 108х3,5 дл12м (Труба э/с пш 108х3,5 дл12м) 108мм-внешний диаметр, 3,5мм-толщина стенки, 12м-длина хлыста.

Труба водогазопроводная 50х3,5 дл6м (Труба вгп ду 50х3,5 дл6м) 50мм-внутренний диаметр, 3,5мм-толщина стенки, 6м-длина хлыста.

Труба бесшовная холоднодеформированная 35х3 н/д (Труба бш хд 35х3 н/д) 35мм-внешний диаметр, 3мм-толщина стенки, н/д- немерной длины(от 4м до 12м)

Труба бесшовная горячедеформированная 60х5 н/д (Труба бш гд 60х5 н/д) 60мм-внешний диаметр, 5мм-толщина стенки, н/д- немерной длины(от 4м до 12м).

Основные технологии производства стальных труб

Стальные трубы могут быть выполнены со сварным швом или без него. В первом варианте производство изделий основывается на сворачивании плоского листа из стали. Для получения прямого стыка стальная лента скручивается в трубу с помощью вальцов. Шов сваривается посредством тока высокой частоты или вольфрамового электрода в инертном газе.

Для получения спиралевидного шва стальная лента сворачивается по спирали.

Бесшовные изделия изготавливаются из стальных стержней с использованием технологий высверливания, литья, горячего или холодного деформирования. В первом случае сырье заливается в специальную форму со стержнем. Второй вариант подразумевает высверливание в цилиндре из стали отверстия. Оба вышеизложенные способы применяются на практике крайне редко, что связано с трудоемкостью процесса изготовления и большими финансовыми затратами. Производители преимущественно используют методы деформации.

Производство труб со сварным швом основывается на сворачивании плоского листа из стали и сваривания ее стыков

Бесшовный горячекатаный прокат выполняется посредством нагревания металлической штанги в печи для превращения ее в цилиндр, что несложно сделать после достижения материалом пластичного состояния. Полученная заготовка неправильной формы обрабатывается на вальцах, где труба стальная бесшовная горячедеформированная доводится до необходимого диаметра и длины.

При холодном методе деформации цилиндрическая заготовка перед обработкой на вальцах предварительно охлаждается. Далее до момента финальной калибровки она подвергается обжигу.

Сфера применения

Самое
распространенное применение — это устройство водоснабжения в жилых и
общественных объектах.

Кроме того отрасли, которые
используют агрессивные вещества, нуждаются в трубопроводах, устойчивым к ним. Поэтому стальные трубы 325х10 используются в химической промышленности.

Они незаменимы также:

  • при монтаже магистральных газопроводов;
  • при реализации инженерно-технических проектов;
  • в дорожном строительстве;
  • в устройстве дренажных систем и трубопроводов;
  • в электротехнических работах.

Для реализации
той или иной
производственной задачи, для решения хозяйственно-бытовой проблемы подбираются
изделия заданного размера. Одинаково эффективны для любых задач электросварные
трубы разных типоразмеров: 57х3 либо 76х2.

Данный прокат
требуется также для ремонта и замены трубопроводов на объектах общественного или частного характера, используя его можно
решить множество вопросов, связанных с благоустройством городской
инфраструктуры: от прокладки водопровода и до возведения опор для
зданий.

Водогазопроводная (ВГП)

Например, коммунальщики используют его для:

  • установки рекламных щитов;
  • закрепления флагштоков во время проведения общегородских мероприятий и праздников;
  • обустройства остановок общественного транспорта;
  • строительства детских площадок;
  • устройства скамеек, беседок в скверах и парках;
  • закрепления на фасадах зданий декоративных объектов.

Наконец,
развитие инновационных технологий дает возможность использовать трубопрокат в
самых разных производствах. Например, сегодня продукция, отвечающая стандарту
10704-91, используется в машиностроении. Интересно, что изделия находят свое
применение и в мебельном производстве: в изготовлении фурнитуры и крепежных
элементов.

Трубы электросварные круглые

Трубы электросварные круглые

К данной группе относятся стальные электросварные прямошовные трубы из углеродистой и низколегированной стали, применяемые для трубопроводов и конструкций различного назначения.

Существует много видов электросварных прямошовных труб, в том числе:

  • круглые;
  • профильные (квадратные, прямоугольные, овальные);
  • профили стальные гнутые замкнутые сварные (квадратные и прямоугольные).

К данной группе относятся стальные электросварные прямошовные трубы диаметром: от 10 до 530мм по ГОСТ 10705-91 (заменяет ГОСТ 10705-80); от 478 до 1420мм по ГОСТ 10706-76. Сортамент труб соответствует ГОСТ 10704-91 (заменяет ГОСТ 10704-76)

По длине трубы изготовляют: немерной длины от 2 до 12м; мерной длины от 5 до 12м; Трубы диаметром свыше 426мм изготовляют только немерной длины Трубы мерной и кратной длины изготовляют двух классов точности по длине: с обрезкой концов и снятием заусенцев; без заторцовки и снятия заусенцев (с порезкой в линии стана). Трубы изготовляют из стали марок: Ст2сп, Ст2пс, Ст2кп, Ст4сп, Ст4пс, Ст4кп по ГОСТ 380 10, 10пс, 20, 35, 45, 08кп по ГОСТ 1050. В зависимости от показателей качества трубы изготовляют следующих групп: А — с нормированием механических свойств; Б — с нормированием химического состава; В — с нормированием механических свойств и химического состава; Д — с нормированием испытательного гидравлического давления. Трубы изготовляют термически обработанными (по всему объему трубы или по сварному соединению), горячередуцированными и без термической обработки. На трубах диаметром 57мм и более допускается один поперечный шов. Трубы диаметром 820мм и более должны иметь два продольных и один поперечный шов.

Отличия ГОСТ 10704, 10705 и 10706

При изготовлении прямошовной трубы обращают внимание на ГОСТ 10704-91, который определяет сортамент, и ГОСТ 10705-80, а также ГОСТ 10706-76, основные технические требования для труб общего назначения. Двумя технологиями сварки определяется наличие двух ГОСТов, а именно электродуговая сварка и контактная сварка токами высокой частоты

В ГОСТе 20295-85 разные сварочные технологии только упоминаются, но напрямую об этом нигде не говорится. Подразумевает контактную сварку токами высокой частоты ГОСТ 10705-80, причем распространяется на трубы диаметром 10-530 мм.

На трубы большого диаметра, от 428 до 1420 мм, изготовленные методом дуговой сварки, распространяется ГОСТ 10706-76. Электродуговая сварка проводится с внешним усилением, это значит, что труба сваривается в три захода: вначале – промежуточный шов, затем наружный, для усиления изготавливается внутренний шов. Эти два ГОСТа для прямошовных труб весьма похожи, но имеют существенные отличия.

Исходя из ГОСТа 10706 трубы небольшого диаметра могут быть сварены поперечным швом, а диаметром от 820 мм должны иметь два продольных и один поперечный швы. Еще он, в отличие от ГОСТа 10705, регламентирует фаску на торцах трубы. Есть и определенные различия касательно марок стали, допустимых при изготовлении труб. По ГОСТу 10706-76 допускается две основные марки, это СТ.3 и Ст.2, а вот ГОСТ 10705-80 уже не ограничивается двумя марками стали 10 и 20. Изготовление труб из марки стали 17ГС и ее аналогов по ГОСТ 10705-80 и 10706-76 не предусмотрено.

Визуальные характеристики шва от высокочастотной сварки значительно выше, чем от электродуговой, такой шов более узкий и практически незаметен. Неровности в виде негладкого утолщения в зоне шва образуются на внутренней поверхности трубы, именуются гратом. В некоторых случаях грат сплющивают или зашлифовывают, наружный удаляют. После электродуговой сварки шов более широкий. Его характеризуют наличием валика усиления с высотой до 5 мм, при этом с обеих сторон – внутренней и внешней.

ГОСТы на металлопрокат

ГОСТ 10706-76 (91)

Здесь речь идет уже об электросварных изделиях, все так же выполненных из стали, но имеющих при этом прямой шов. Такого рода трубы активно используются в целях общего предназначения. Заметим также, что минимальный диаметр труб, согласно этому нормативному документу, должен составлять 42,5 сантиметра, а максимальный – 162 сантиметра.

Таблица №9. Трубы стальные электросварные прямошовные.

Наружный диаметр, мм Теоретическая масса 1 м труб, кг, при толщине стенки, мм
1,0 1,2 1,4 (1,5) 1,6 1,8 2,0 2,2 2,5 2,8 3,0
10 0,222 0,260 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4
10,2 0,227 0,266
12 0,271 0,320 0,366 0,388 0,410
13 0,296 0,349 0,401 0,425 0,450
14 0,321 0,379 0,435 0,462 0,489 — .
(15) 0,345 0,408 0,470 0,499 0,529
16 0,370 0,438 0,504 0,536 0,568
(17) 0,395 0,468 0,539 0,573 0,608
18 0,419 0,497 0,573 0,610 0,719 0,789
19 0,444 0,527 0,608 0,647 0,687 0,764 0,838
20 0,469 0,556 0,642 0,684 0,726 0,808 0,888
21,3 0,501 0,595 0,687 0,732 0,777 0,866 0,952
22 0,518 0,616 0,711 0,758 0,805 0,897 0,986
(23) 0,543 0,645 0,746 0,795 0,844 0,941 1,04 1,13 1,26 3/4
24 0,567 0,675 0,780 0,832 0,884 0,985 1,09 1,18 1,33
25 0,592 0,704 0,815 0,869 0,923 1,03 1,13 1,24 1,39
26 0,617 0,734 0,849 0,906 0,963 1,07 1,18 1,29 1,45  
27 0,641 0,764 0,884 0,943 1,00 1,12 1.23 1,35 1,51  
28 0,666 0,793 0,918 0,980 1,04 1,16 1,28 1,40 1,57  
30 0,715 0,852 0,987 1,05 1,12 1,25 1,38 1,51 1,70  
32 0,765 0,911 1,06 1,13 1,20 1,34 1,48 1,62 1,82 2,02  

Продолжение табл. 8

Наружный диаметр, мм Теоретическая масса 1 м труб, кг, при толщине стенки, мм
1,0 1,2 1,4 (1,5) 1,6 1,8 2,0 2,2 2,5 2,8
33 0,789 0,941 1,09 1,17 1,24 1,38 1,53 1,67 1,88 2,09
33,7 0,962 1,12 1,19 1,27 1,42 1,56 1,71 1,92 2,13
35 1,00 1,16 1,24 1,32 1,47 1,63 1,78 2,00 2,22
36 1,03 1,19 1,28 1,36 1,52 1,68 1,83 2,07 2,29
38 1,09 1,26 1,35 1,44 1,61 1,78 1,94 2,19 2,43
40 1,15 1,33 1,42 1,52 1,70 1,87 2,05 2,31 2,57
42 1,21 1,40 1,50 1,59 1,78 1,97 2,16 2,44 2,71
44,5 1,28 1,49 1,59 1,69 1,90 2,10 2,29 2,59 2,88
45 1,30 1,51 1,61 1,71 1,92 2,12 2,32 2,62 2,91
48 1,61 1,72 1,83 2,05 2,27 2,48 2,81 3,12
48,3 1,62 1,73 1,84 2,06 2,28 2,50 2,82 3,14
51 1,71 1,83 1,95 2,18 2,42 2,65 2,99 3,33
53 1,78 1,91 2,03 2,27 2,52 2,76 3,11 3,47
54 1,82 1,94 2,07 2,32 2,56 2,81 3,18 3,54
57 1,92 2,05 2,19 2,45 2,71 2,97 3,36 3,74
60 2,02 2,16 2,30 2,58 2,86 3,14 3,55 3,95
63,5 2,14 2,29 2,44 2,74 3,03 3,33 3,76 4,19
70 2,37 2,53 2,70 3,03 3,35 3,68 4,16 4,64
73 3/4 3/4 2,47 2,64 2,82 3,16 3,50 3,84 4,35 4,85
76 2,58 2,76 2,94 3,29 3,65 4,00 4,53 5,05
88 3,21 3,60 4,00 4,38 4,96 5,54
89 3,45 3,87 4,29 4,71 5,33 5,95
95 3/4 4,59 5,70
102 3/4 3/4 3/4 4,45 4,93 5,41 6,13 6,85
108 3/4 4,71 5,23 5,74 6,50 7,26
114 4,98 5,52 6,07 6,87 7,68
127 5,56 6,17 6,77 7,68 8,58

Продолжение табл. 8

Наружный диаметр, мм Теоретическая масса 1 м труб, кг, при толщине стенки, мм
1,0 1,2 1,4 (1,5) 1,6 1,8 2,0 2,2 2,5 2,8
133 5,82 6,46 7,10 8,05 8,99
140 6,13 6,81 7,48 8,48 9,47
152 3/4 6,67 7,40 8,13 9,22 10,30
159 6,98 7,74 8,51 9,65 10,79
168 7,38 8,19 9,00 10,20 11,41
177,8 7,81 8,67 9,53 10,81 12.08
180
193,7 9,46 10,39 11,79 13,18
219 13,35 14,93
244,5

Продолжение табл. 8

Наружный диаметр, мм Теоретическая масса 1 м труб, кг, при толщине стенки, мм
3,0 3,2 3,5 3,8 4,0 4,5 5,0 5,5 6,0 7,0 8,0
26 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4
27
28
30
32 2,15
33 2,22
33,7 2,27
35 2,37
36 2,44 3/4 3/4 3/4
38 2,59 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4
40 2,74 3/4 3/4 3/4 3/4 3/4
42 2,89 3/4
44,5 3,07
45 3,11 3/4
48 3,33 3,54 3,84
48,3 3,35 3,56 3,87
51 3,55 3,77 4,10
53 3,70 3,93 4,27
54 3,77 4,01 4,36

Таблица №9. Предельные отклонения по наружному диаметру трубы

Наружный диаметр труб, мм Предельные отклонения по наружному диаметру при точности изготовления
обычной повышенной
10 +-0,2 мм 3/4
Св. 10 до 30 включ. +-0,3 мм +-0,25
 » 30 » 51 » +-0,4 мм +-0,35
 » 51 » 193,7 » +-0,8 % +-0,7 %
 »193,7 » 426 » +-0,75 % +-0,65 %
 » 426 » 1020 » +-0,7 % +-0,65 %
 » 1020 +-0,6 % +-6,0 мм
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Это лофт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: