Методы гибки труб без заводских приспособлений
В бытовых условиях нередко возникает необходимость в изгибании трубных заготовок при проведении строительных работ или монтаже газовых трубопроводов. При этом экономически нецелесообразно тратить финансовые средства на приобретение заводских трубогибов для разовых операций, многие применяют для этих целей простые самодельные приспособления.
Стальные трубы
Сталь относится к довольно жестким и прочным материалам, с большим трудом поддающимся деформации, основным методом изменения ее конфигурации является сгиб в нагретом состоянии с наполнителем при одновременном физическом воздействии. Для труб из тонкостенной нержавейки для получения длинного участка с небольшим радиусом изгиба применяют следующую технологию:
- Устанавливают заготовку вертикально, закрывают ее с одного конца пробкой и внутрь засыпают очень мелкий сухой песок, после полного заполнения вставляют пробку с другой стороны.
- Находят трубу или низкий вертикальный столб нужного диаметра и жестко закрепляют трубный конец на его поверхности.
- Оборачивают деталь вокруг трубной оси, поворачивая шаблон или обходя его вокруг.
- После навивки освобождают конец и извлекают изогнутую деталь из шаблона, снимают пробки и высыпают песок.
Выполнение расчетов на изгиб
Выполнение расчета круглой трубы на изгиб требуется для того, чтобы определить максимально допустимый уровень напряжения на каждый конкретный участок трубы.
Каждый материал имеет свою величину нормального напряжения, которые не оказывают какого-либо воздействия на само изделие. Для получения правильных расчетов, их нужно проводить по специальной формуле
Особое внимание следует уделять тому, чтобы показатели оставались в пределах максимально разрешенных значений. Согласно закону Гука, образующаяся сила упругости прямо пропорциональна деформации
Рассчитывая величину изгиба, нужно дополнительно использовать следующую формулу напряжения: M/W, где M – величина изгиба по оси, испытывающая на себе усилие, а W – величина сопротивления этой оси в месте изгиба.
Радиус гиба трубы – приспособления для получения в быту и промышленности
На строительном рынке можно обнаружить большое количество приспособлений индивидуального использования для изгибания труб, от простейших пружин до сложных электромеханических станков с гидравлической подачей.
Ручные трубогибы
Трубогибы данного класса обладают невысокой стоимостью, имеют простую конструкцию, малый вес и габариты, процесс изгибания заготовки происходит за счет физического усилия работника. По принципу работы ручные агрегаты, выпускаемые промышленностью, можно разбить на следующие категории.
Рычажные. Изгибание производится за счет большого рычага, позволяющего уменьшить прилагаемое мышечное усилие. В таких устройствах заготовка вставляется в оправку заданной формы и размера (пуансон) и с помощью рычага происходит огибание шаблонной поверхности изделием – в результате получается элемент заданного профиля. Рычажные устройства позволяют получать радиус закругления в 180 градусов и подходят для труб из мягких металлов небольшого диаметра (до 1 дюйма). Для получения закруглений различного размера используют сменные пуансоны, для облегчения проведения работ многие модели оснащаются гидроприводом.
Рис. 7 Арбалетные приспособления ручного типа
Арбалетные. При работе заготовка помещается на два валика или упора, а изгибание происходит давлением на ее поверхность между упорами пуансона заданной формы и сечения. Агрегаты имеют сменные пуансонные насадки и передвижные упоры, позволяющие задавать радиус изгиба стальной трубы или заготовок из цветных металлов.
Какие применяются формулы и таблицы
Для корректного расчёта прочности трубы на изгиб необходимо узнать длину детали. Делается это по следующей формуле:
Д= 0,0175×Р×У+р1, где
Д — длина заготовки; Р – радиус изгиба трубы (мм); У — требуемый угол изгиба; р1 – расстояние для удержания заготовки, необходимое при применении специального оборудования.
Далее осуществляем оценку величины предполагаемого к изгибу участка по такой формуле:
Д1= π×У/180(Р+ДН/2), где
Д1 – длина сгибаемого участка; π – известная математическая константа; У – угол изгиба (градусы); ДН – диаметр по внешней поверхности трубы (мм).
В ГОСТах №617/90 и №494/90 содержатся наименьшие значения основных характеристик, на основе которых производится расчёт прочности профильного трубного изделия на изгиб.
Основные характеристики, используемые в процессе вычисления прочности трубы на изгиб, приведены в ниже размещённой таблице.
Таблица 1
Радиус изгиба минимальный | Минимальная длина свободной части | Внешний диаметр |
90 | 60 | 30 |
72 | 55 | 24 |
36 | 50 | 18 |
30 | 45 | 15 |
24 | 35 | 12 |
20 | 30 | 10 |
16 | 25 | 8 |
12 | 18 | 6 |
8 | 12 | 4 |
6 | 10 | 3 |
Данные в этой таблице относятся к трубным изделиям из латуни и меди. А расчет нагрузки на изгиб на профильную трубу, произведённую из стали, осуществляется в соответствии с данными, приведёнными ниже (ГОСТ №3263/75).
Таблица 2
Размер трубы | Длина свободной части (минимальная) | Минимальный радиус изгиба | ||
Условный проход | Внешний диаметр | Горячее состояние | Холодное состояние | |
100 | 114 | 230 | 340 | 680 |
80 | 88,5 | 170 | 265 | 530 |
65 | 75,5 | 150 | 225 | 450 |
50 | 60 | 120 | 180 | 360 |
40 | 48 | 100 | 150 | 290 |
32 | 42,3 | 85 | 130 | 250 |
25 | 33,5 | 70 | 100 | 200 |
20 | 26,8 | 55 | 80 | 160 |
15 | 21,3 | 50 | 65 | 130 |
10 | 17 | 45 | 50 | 100 |
8 | 13,5 | 40 | 40 | 80 |
В число основных параметров, которые необходимо учитывать, определяя нагрузку при изгибе, входят также толщина стенок и диаметр обрабатываемой заготовки. Корреляция этих двух показателей представлена в очередной таблице. Кстати, содержащиеся в ней сведения можно использовать и для расчета нагрузки на трубу круглого сечения.
Таблица 3
Диаметр (мм) | Радиус сгиба (минимальный) при толщине стенок | |
Толщина более 2 мм | Толщина менее 2 мм | |
60/140 | 5D | 7D |
35/60 | 4D | 6D |
20/35 | 3D | 5D |
5/20 | 3D | 4D |
Необходимо сказать ещё вот о чём. Заменить ручной расчёт нагрузки рассматриваемого типа призваны различные присутствующие в интернете он-лайн калькуляторы. Работают они в соответствии с заложенными в них формулами, ориентированными на различные образцы трубной продукции. Спектр применения современного он-лайн калькулятора очень широк: начиная от простейшего расчета круглой трубы на прогиб, и заканчивая подсчётом нагрузки на профильную трубу при её сгибании.
Деформация труб в месте сгиба иногда неизбежна, но она может ухудшить характеристики готовой конструкции
Какие методы используют для расчета нагрузок
Для расчета нагрузки на профильную трубу пользуются:
- таблицами;
- математическими формулами;
- специальным онлайн калькулятором.
Применяем таблицы
При применении первого метода нужно сопоставление физических характеристик трубы, которая будет применяться для сооружения системы, с табличными данными. Для этого берут значения величин из таблиц 1 или 2, в зависимости от типа профиля.
Таблица 1. Нагрузки для стояков квадратного сечения
Сечение, мм |
Максимально возможная масса, кг | |||
Длина пролета, м | ||||
1 | 2 | 4 | 6 | |
40х40х2 | 709 | 173 | 35 | 5 |
50х50х2 | 1165 | 286 | 61 | 14 |
60х60х3 | 2393 | 589 | 129 | 35 |
80х80х3 | 4492 | 1110 | 252 | 82 |
100х100х4 | 9217 | 2283 | 529 | 185 |
140х140х4 | 19062 | 4736 | 1125 | 429 |
Таблица 2. Нагрузки для стояков прямоугольного сечения
(для вычислений используют длинную сторону)
Сечение, мм |
Максимально возможная масса, кг | |||
Длина пролета, м | ||||
1 | 3 | 4 | 6 | |
50х25х2 | 684 | 69 | 34 | 6 |
60х40х3 | 1255 | 130 | 66 | 17 |
80х40х3 | 2672 | 281 | 146 | 43 |
80х60х3 | 3583 | 380 | 199 | 62 |
100х50х4 | 5489 | 585 | 309 | 101 |
120х80х3 | 7854 | 846 | 455 | 164 |
Эти таблицы имеют данные о максимально допустимых массах. При таком воздействии на профиль труба не разрушится, а лишь согнется.
В связи с этим, на практике выбирается деталь прямоугольного или квадратного сечения, запас прочности которой был бы большим от минимального хотя бы в 2 раза.
Преимущества табличного метода
Табличный метод отличается высокой точностью. Для его применения нужно обладать информацией о видах опор, способах фиксации на них профилей, типах нагрузок.
Кроме этого, для полных расчетов нагрузок необходимо иметь данные о:
- моментах инерции профильной прямоугольной или квадратной трубы, значение которых можно взять из таблиц, начиная от сечений 15х15х1 5 и оканчивая 100х100х4 и выше;
- длине пролетов;
- величине тяжести на каждый стояк;
- коэффициентах модулей упругости (взять из СНиП).
Масса 1 м.п. профиля 15х15х1,5 составляет 0,606 кг. Исходя из этого, можно провести соответствующие вычисления.
После этого переходим к специальным формулам, то есть, к математическому методу. В соотношениях показано, как связаны между собой данные физические величины, как найти неизвестную величину, имея 2 или больше известных параметра и пр.
А может лучше калькулятором?
Быстрее всего можно провести расчеты с применением калькулятора. Особенность такой программы состоит в том, что необходимо ввести нужные параметры, характеристики изделий, линейные размеры, иные свойства будущей конструкции. В конце онлайн калькулятор выдаст расчет нагрузки профильной трубы для заданных параметров.
Важно! Для расчета нагрузок нужно пользоваться специальными онлайн калькуляторами, которые размещены на сайтах надежных компаний. Важно! Лучше всего воспользоваться услугами лиц, которые знакомы с ГОСТами, разбираются в строительстве, сопромате, имеющие опыт работы с аналогичными программами
Что в первую очередь рассчитывают при помощи формул
Вычисляют многие параметры.
Чаще других ищут:
- Допустимый уровень напряжения при изгибах. Используется формула
Р= M/W,
где Р – возможное напряжение при изгибе,
М – значение изгибающего момента силы,
W – механическое сопротивление. - Требуемое сечение стояка:
F = N/R,
где F – необходимая площадь сечения (см²),
N – действующая масса (кг),
R – значение сопротивления металла при деформациях, соответственно пределу текучести (кг/см²).
Значения физических величин можно отыскать в специальных таблицах.
Пределы радиусов изгиба труб
Руководствуясь госстандартами, трубы должны иметь минимальный радиус изгиба (детальнее: «Какой радиус гиба труб можно получить при помощи разных типов трубогибов»). При осуществлении сгибания при помощи нагрева трубы, заполненной песком, внешнее сечение трубы должно быть как минимум 3,5 DN. При изменении формы трубы на трубогибочной установке без использования нагрева – более 4DN.
При прогреве газовой горелкой или в печи, чтобы складки образовывались наполовину, величина должна равняться 2,5 DN. В случае потребности в получении сильного сгиба, например для систем с согнутыми канализационными отводами, которые изготавливаются способом горячей протяжки или штамповкой – более 1 DN.
Труба может иметь и меньшую величину сгиба. Тем не менее, допускать это можно лишь в том случае, если трубы изготавливались при технологии, когда их стенки утончаются на 15 % от всей толщины.
Все расчеты на прочность трубы при изгибе должны осуществляться с максимальной ответственностью.
Радиус гиба трубы — приспособления для получения в быту и промышленности
На строительном рынке можно обнаружить большое количество приспособлений индивидуального использования для изгибания труб, от простейших пружин до сложных электромеханических станков с гидравлической подачей.
Ручные трубогибы
Трубогибы данного класса обладают невысокой стоимостью, имеют простую конструкцию, малый вес и габариты, процесс изгибания заготовки происходит за счет физического усилия работника. По принципу работы ручные агрегаты, выпускаемые промышленностью, можно разбить на следующие категории.
Рычажные. Изгибание производится за счет большого рычага, позволяющего уменьшить прилагаемое мышечное усилие. В таких устройствах заготовка вставляется в оправку заданной формы и размера (пуансон) и с помощью рычага происходит огибание шаблонной поверхности изделием — в результате получается элемент заданного профиля. Рычажные устройства позволяют получать радиус закругления в 180 градусов и подходят для труб из мягких металлов небольшого диаметра (до 1 дюйма). Для получения закруглений различного размера используют сменные пуансоны, для облегчения проведения работ многие модели оснащаются гидроприводом.
Рис. 7 Арбалетные приспособления ручного типа, чтобы получить нужный радиус гиба трубы
Арбалетные. При работе заготовка помещается на два валика или упора, а изгибание происходит давлением на ее поверхность между упорами пуансона заданной формы и сечения. Агрегаты имеют сменные пуансонные насадки и передвижные упоры, позволяющие задавать радиус изгиба стальной трубы или заготовок из цветных металлов.
Гибочный башмак установлен на штоке, который может перемещаться с помощью винтовой передачи, гидравлического давления жидкости при ручном нагнетании или посредством гидравлики с электроприводом. Подобные устройства позволяют производить изгибание труб из мягких материалов диаметром до 100 мм.
Трехроликовые агрегаты (трубогибочные вальцы). Являются самым распространенным типом трубогибочных агрегатов в быту и промышленности, работают по принципу холодной вальцовки. Конструктивно выполнены в виде двух роликов, в ручьи которых устанавливается заготовка, третий ролик постепенно подводят к поверхности, одновременно прокатывая изделие в разные стороны. В результате происходит деформация заготовки без складкообразования большего сечения, чем в других ручных трубогибах.
Отличительной особенностью агрегата является невозможность получения малого радиуса закругления (обычное значение 3 — 4 величины внутреннего диаметра).
Все перечисленные устройства являются бездорновыми агрегатами, поэтому неэффективны при гибке тонкостенных изделий, также их нежелательно использовать при работе с заготовками со сварным стыком стенок — при пластический деформации возможно раскрытие отдельных участков шва.
Рис. 8 Трубогибочные вальцы
Электромеханические трубогибы
Электромеханические агрегаты в основном используются в промышленности и обеспечивают выполнение следующих технологических процессов.
- Бездорновая гибка. Станки применяются при работе с заготовками, для радиусов гиба 3 — 4 D., способны изгибать толстостенные трубы для мебельной и строительной отрасли, магистральных трубопроводов. Станки имеют самую простую конструкцию и управление по сравнению с другими видами, отличаются малыми габаритными размерами и весом.
- Бустерная обработка. Агрегаты, работающие по специальной технологии продвижения каретки с деталью дополнительным узлом, разработаны для получения сложных гибов без утоньшения стенок. Применяются для изготовления змеевиков различной формы в тепловой энергетике, котельной и водонагревательной индустрии.
- Дорновая гибка. Агрегаты данного типа позволяют производить высококачественное изгибание тонкостенных элементов с наружным диаметром до 120 мм. Промышленные станки могут иметь автоматическое или полуавтоматическое исполнение с числовым программным управлением.
- Трехвалковая гибка. Конструкция широко используется для изгибания любых металлов и сплавов, отличается универсальностью: отлично справляется с профилем круглого или прямоугольного сечения, уголками и плоскими пластинами. Многофункциональность агрегата достигается за счет смены валков с различным видом рабочих поверхностей и размеров.
При помощи данного агрегата удобно гнуть элементы большой длины с одинаковым большим радиусом закругления на всем протяжении.
Рис. 9 Промышленные трубогибы
Расчет заборного столба на прочность
<< Часть 1 | Часть 2 | Часть 3 >>
Итак, на 2-метровый пролет типового забора высотой 2 метра (т.е. на один заборный столб) действует ветровая нагрузка:
F = 2 х 2 х 38,9 = 155,6 кгc
Точка приложения нагрузки (L) определяется посередине листа профнастила (1 м) плюс расстояние от нижнего края профнастила до земли (возьмем 25 см). Таким образом, сила ветра, действующая на заборный столб, вызывает изгибающий момент в месте выхода столба из земли (максимально нагруженное сечение) в размере:
М = FLk = 155,6 х 1,25 х 1,5 = 291,75 кгс·м
где k – тот самый запас прочности, о котором говорилось выше. В нашем случае k=1,5.
Подчеркнем, что определенный выше момент, действующий на столб, рассчитан для забора с нашими характеристиками. А именно: высота профнастила — 2 м, шаг столбов (пролет) — 2 метра, расстояние от нижней кромки профлиста до земли — 0,25 м. Изменение любого из параметров влечет изменение нагрузки на столб и требует обязательного пересчета!
Теперь нам остается всего лишь подобрать такой типоразмер трубы, прочность на изгиб которого перекрывает указанный момент. Максимальный изгибающий момент металлической балки определяется по формуле:
М = σW/1000
Где σ – предел текучести материала (кгс/мм2), W – момент сопротивления сечения (мм3), а 1000 — для перевода единиц из мм в метры.
Предел текучести для стали Ст1пс, Ст10 (из которой изготавливаются трубы обычного качества, продаваемые на рынках) составляет 20-21 кгс/мм2. Момент сопротивления рассчитывается по формуле:
W=π(D4-d4)/32D – для круглой трубы
W=(H4-h4)/6H – для квадратной трубы
Получим разрушающие изгибающие моменты для различных типоразмеров труб:
Круглая труба
Внешний диаметр трубы, мм | Толщина стенки, мм | Разрушающий момент, кгс·м |
60 | 2 | 102,28 |
60 | 3 | 145,85 |
76 | 2,5 | 205,41 |
76 | 3 | 241,62 |
76 | 3,5 | 276,31 |
76 | 4 | 309,53 |
89 | 3 | 337,19 |
89 | 3,5 | 386,74 |
89 | 4 | 434,52 |
Квадратная труба
Наружний размер трубы, мм | Толщина стенки, мм | Разрушающий момент, кгс·м |
60 | 2 | 173,64 |
60 | 2,5 | 211,63 |
60 | 3 | 247,61 |
60 | 3,5 | 281,64 |
60 | 4 | 313,8 |
80 | 3 | 457,23 |
80 | 4 | 586,92 |
Из представленных таблиц видно, что для использования в качестве столбов для сплошного забора с нашими исходными параметрами (шаг — 2 метра, высота профлиста – 2 метра) подойдет круглая труба, начиная с типоразмера 76х4 мм, квадратная – начиная с 60х4 мм (выделено зеленым). Чем выше забор и больше расстояние между столбами, тем более прочную нужно выбирать трубу.
Расчеты показывают, что уж точно не стоит покупать для строительства сплошного забора из профнастила с нашими параметрами (2 х 2 м) трубу квадратного сечения 60х2 мм, так уверенно предлагаемую рыночными торговцами.
Используя приведенные выше формулы, Вы можете самостоятельно определить типоразмер трубы для использования в качестве столба Вашего будущего забора любой высоты и с любым шагом столбов. Если всё равно сложно — обращайтесь. Мы с радостью сделаем это для Вас!
<< Назад: «Темные силы…» | Вперед: «Скрытая угроза»>> |
Перейти в раздел каталога «Столбы для забора«
Поделись с друзьями: | Перейти: Цены на забор из профнастила |
Особенности профильных изделий
Профильные трубы, которые широко используются в монтаже различных конструкций и прокладке коммуникаций, представляют собой полый продолговатый металлический брусок с сечением квадратной или прямоугольной формы.
Материалом для изготовления профильных изделий является высокоуглеродистая сталь различных марок.
Профилированная стальная труба служит материалом для сооружения каркасов различный конструкций:
- теплиц;
- павильонов и остановок;
- рекламных конструкций;
- перегородок;
- лестниц;
- мебели и т. д.
Также стальная труба может использоваться в качестве перекрытия или балки.
Особенности профильных изделий
Профильные трубы, которые широко используются в монтаже различных конструкций и прокладке коммуникаций, представляют собой полый продолговатый металлический брусок с сечением квадратной или прямоугольной формы.
Материалом для изготовления профильных изделий является высокоуглеродистая сталь различных марок.
Профилированная стальная труба служит материалом для сооружения каркасов различный конструкций:
- теплиц;
- павильонов и остановок;
- рекламных конструкций;
- перегородок;
- лестниц;
- мебели и т. д.
Также стальная труба может использоваться в качестве перекрытия или балки.
Нагрузка на трубы круглого сечения
Применение
Круглые трубы можно встретить в любом месте. Опоры, стойки, колонны, емкости – это далеко не полный перечень использования обечаек (обечайка – металлический лист цилиндрической формы без торцов).
Кольцевой трубный профиль можно встретить при прокладке водо-, нефте-, газопроводов как в быту, так ив промышленных масштабах. Они – отличный материал для столбиков ограждений, ворот, калиток.
Благодаря наличию замкнутого контура, круглая труба обладает существенным преимуществом в сравнении со швеллерами, уголками аналогичных линейных параметров.
В результате деления первого параметра на второй, получил искомую прочность. После сравнения полученного параметра с допускаемым значением, взятого с таблицы, делают вывод о том, можно ли такую нагрузку давать на конкретный стояк, или нельзя.
Если число будет меньше допускаемого, то все хорошо. Но тут есть одно но: вычисления справедливые для растягивания, а не для сжатия.
Пользуемся калькулятором
Для варианта со сжатием круглой стойки, можно провести необходимые расчеты с использованием онлайн калькулятора.
Сначала необходимо ознакомиться с дополнительными понятиями. Сюда относят:
- Потерю общей устойчивости.
Проверка потери нужна для избегания огромных потерь иного типа. - Потерю местной устойчивости.
Речь идет о более раннем «заканчивании» жесткости стенок стояка при действии нагрузки на обечайку. Иначе говоря, труба начинает заламываться вовнутрь, а сечение круглого вида превращается в профиль неправильной криволинейной формы, что ведет к потере устойчивости.
Использование Excel
Существует специальная программа в Excel комплексной проверки расчета стояков относительно устойчивости и прочности. Основу данной программы составляют данные ГОСТа 14249 89. С ее помощью можно вычислить максимальную нагрузку на круглую трубу, а также усилия общего характера на обечайку круглого сечения.
В интернете можно часто встретить такие вопросы: «Какую нагрузку выдерживает круглая труба длиной 3, 4, 6 метров? Как это вычислить с помощью онлайн калькулятора? Можно ли это сделать самостоятельно?»
На эти и другие вопросы постараемся дать подробный ответ. Лучшим объяснением будет практический расчет величины вертикальной нагрузки на круглую трубу. Для примера, возьмем вертикальный круглый стояк диаметром 57 мм длиной 3 метра (чаще всего используется для обустройства навесов, гаражей, иных сооружений) и вычислим, какую нагрузку труба сможет выдержать.
Какие данные нужны
Алгоритм работы с программой состоит в следующем:
- Сначала нужно открыть ГОСТ 14249 89, из которого необходимо выписать первых 5 исходных значений. Для быстрого отыскания параметров воспользоваться примечаниями к каждой ячейке.
- Заполнить ячейки D8, D9, D10, вписывая в них линейные параметры стояков.
- В ячейки от D11 до D15 внести возможные нагрузки.
Важно! Если на обечайку будет действовать внутреннее избыточное давление, то значение наружного давления равняется нулю. Аналогично: при воздействии на стояк внешнего избыточного давления, параметр внутреннего давления также будет равным нулю
Важно! Помните, что примечания к каждой ячейке в столбце «Значение» содержат в себе ссылку номеров нужной формулы, необходимой таблицы или чертежа из ГОСТа 14249 89
Что получилось в результате
Нужно не только уметь пользоваться программой, но также уметь объяснить полученные результаты.
Необходимо сопоставить отношение действующей нагрузки к допускаемой: при получении числа, большего за единицу, труба – перегруженная. В противном случае – заданный вес стояк выдержит, при условии, что расчет нагрузки на трубу круглого сечения проведен правильно.
Важно! Пользователь должен увидеть значение суммарного влияния всех действующих сил и давлений
Нагрузка, действующая на профильную трубу
Если планируется изготовить беседку или теплицу, то серьезно задумываться о нагрузках не стоит, так как такие конструкции не подвержены воздействию серьезных сил. А вот если изготавливается навес, козырек, каркас для более серьезного сооружения – то здесь просто необходимы обстоятельные рассчеты.
Профильные трубы устойчивы к деформации, но и у них есть предел. Если нагрузка будет соответствовать норме, то изделие, под действием груза, например, мокрого снега, может согнуться. Если снег удалить, то труба примет свою исходную форму. В том случае, когда допустимая нагрузка превышена, труба не восстановит форму. Это в лучшем случае, в худшем – она просто разорвется.
При выборе профильной трубы, таким образом, необходимо учитывать:
размеры;
- сечение. Как правило, используются прямоугольные трубы и трубы с квадратным сечением;
- напряжение каркаса из труб;
- прочность материала;
- вероятные нагрузки, которые могут возникнуть в процессе эксплуатации.