Как работает теплообменник труба в трубе

Виды устройств для дымохода

Среди воздушных разновидностей традиционной моделью для самостоятельного изготовления считается трубчатый теплообменник, хотя есть и множество других вариантов.

Рассмотрим основные виды, которые актуальны для монтажа на дымоход печей длительного горения, малогабаритных буржуек, печей на отработке. Тепло, которое они преобразуют из энергии продуктов горения, называют сухим.

Если представить схематично внутреннюю часть устройств, то она может иметь следующие вариации.

Горизонтально или вертикально расположенные трубы, приваренные к корпусу топки. Вертикальное расположение эффективнее, так как воздух лучше проходит сквозь каналы. Материал изготовления – сталь.

Для приваривания к стенкам могут применяться фрагменты труб диаметром от 50 мм до 200 мм. Считается, что форма сечения – прямоугольная или круглая – принципиально не важна

Производительность во многом зависит от разницы уровней входа и выхода воздуха. Силу тяги определяет разница в температуре, поэтому отверстие, отвечающее за забор, часто выводят на улицу

Перегородки внутри корпуса. Своеобразный лабиринт составляют из металлических пластин, установленных вертикально. Оптимальная толщина деталей – от 6 мм до 8 мм.

Входное и выходное отверстия воздуховода должны располагаться напротив начала и конца лабиринта. Сверху устанавливают и приваривают металлическую крышку, обеспечивающую герметичность корпуса

Трубы, проходящие сквозь топку.

Интегрированную конструкцию необходимо создавать при сборке самодельной печи, еще перед тем, как заварятся стенки. Каналы расположены параллельно, на некотором расстоянии друг от друга. Сечение труб – 50 мм и более

Принцип работы и устройство пластинчатого теплообменника для котельного оборудования

Пластинчатые теплообменники, виды, устройство и принцип работы которых описаны в данной статье, относятся к классу рекуперативных устройств. Эти аппараты имеют теплообменную поверхность, которая образована целым набором штампованных тонких стальных пластин с гофрированным основанием. Эти теплообменники для котлов имеют в составе элементы, собираемые в единый пакет, который формирует между собой каналы, по последним проходит теплоноситель, обменивающийся тепловой энергией.

Принцип работы таких устройств нельзя назвать самым простым, в нем пластины устанавливаются по отношению друг к другу с поворотом на 180 градусов. Это позволяет скомпоновать 4 элемента, из которых два будут относиться к коллекторному контуру отвода, тогда как другие – к подаче теплоносителя.

Два крайних элемента в процессе обмена тепловой энергией участвовать не будут. Подобные теплообменники для котлов могут обладать разным принципом действия в зависимости от компоновки, которая бывает многоходовой или одноходовой. В последнем случае теплоноситель разделяется на параллельно идущие потоки, он проходит по всем каналам и устремляется для вывода в порт. Многоходовая компоновка предполагает использование более сложной схемы, так как теплообменник в этом случае передвигается по одинаковому числу каналов. Это достигается несколько иным способом, который выражен в наличии дополнительных пластин. В них входят глухие порты. Помимо прочего, обслуживать данную разновидность пластинчатого теплообменника несколько сложнее.

Как изготовить самодельный теплообменник

Регистр из нескольких труб

Форма теплообменника для отопления, сделанного своими руками, может быть разной. Наиболее распространенный вариант — регистр из нескольких стальных или медных труб, но также используются и образцы пластинчатого типа.

Температура в зоне горения очень высока, особенно, когда горит уголь. Поэтому повышенные требования предъявляются к металлу, из которого будут изготовлены элементы теплообменника, рациональности его конструкции и качеству сварных швов.

Материалы для изготовления

Пример использования чугунных радиаторов в качестве теплообменника в кирпичной печи

Задача водяных теплообменников для отопления — обеспечивать оптимальную передачу тепла, и в этом процессе важна степень теплопроводности металла. Например, стальная труба проводит тепло в 7 раз слабее, чем медная. Поэтому при одинаковом диаметре трубы для передачи одного и того же количества тепла понадобится 25 метров стальной трубы взамен 3,5 метров медной.

Медные теплообменники самые экономичные в работе, но и дорогие. Более доступными для самостоятельного изготовления считаются теплообменники из стальной трубы диаметром не менее 32 мм.

Расчет мощности теплообменника

Вычислить заранее мощность теплообменника для системы отопления довольно трудно. Для этого нужно учитывать слишком много факторов: диаметр труб, длину змеевика, теплопроводность металла, температуру сгорания топлива, скорость циркуляции теплоносителя и др. Реальная способность теплообменника справляться со своими функциями выяснится только после начала эксплуатации отопительной системы.

При расчетах можно ориентироваться, что 1 метр трубы диаметром 50мм, служащей теплообменником, даст 1 кВт тепловой мощности.

Особенности конструкции

Теплообменник для водяного отопления дома, сваренный из гладкостенных труб, называют регистром. Он выглядит как своеобразная «решетка», и это наиболее популярная форма самодельного теплообменника. Кроме такой конструкции, делают и более простые устройства в виде прямоугольного или цилиндрического бака. Главное, чтобы площадь поверхности для теплового обмена была максимально большой.

При изготовлении теплообменника своими руками нужно соблюдать несколько условий:

  • ширина внутренних пустот в теплообменнике должна быть не меньше 5 мм, иначе вода в нем может закипеть;
  • толщина стенок труб должна быть не меньше 3 мм, чтобы металл не прогорал;
  • зазор величиной 10–15 мм между теплообменником и стенками топки должен компенсировать расширение металла при нагреве.

Особенности монтажа

Теплообменник устанавливают внутрь печи в процессе ее кладки

Проще всего монтировать теплообменник одновременно с сооружением печи. Если устанавливать его в старую печь, придется разобрать часть ее кирпичной кладки.

Порядок действий:

  1. На подготовленный фундамент печи прямо в полость топки устанавливают трубчатый теплообменник.
  2. При дальнейшем укладывании рядов кирпичей оставляют места для входной и выходной труб устройства.
  3. После завершения кладки печи подключают теплообменник к системе отопления, заполняют систему водой и производят пробную топку печи.

Видео материал предлагает ознакомиться с полезными советами по самостоятельному изготовлению теплообменника:

До сих пор мы говорили только о теплообменниках в системе водяного отопления

Обратим внимание и на другие сферы их применения

Теплообменники типа «труба в трубе»

Общие сведения о теплообменниках

Теплообменные аппараты (также их называют теплообменниками) используют для обеспечения обмена теплотой между двумя теплоносителями. При этом один теплоноситель нагревается, а второй, соответственно, охлаждается.

В зависимости от назначения, теплообменники на тепловых трубах разделяют на:

  • Нагреватели
  • Холодильники

Одна из схем теплообменника

По способу теплопередачи теплообменники разделяют на:

  • Поверхностные – теплоносители в них разделены стенкой, через поверхность которой и происходит теплообмен
  • Регенеративные – процесс теплопередачи разделяется на два периода, и происходит при попеременном нагревании-охлаждении специальной насадки
  • Смесительные – теплообмен в таких устройствах происходит при непосредственном контакте и перемешивании теплоносителей.

Конструкция теплообменника труба в трубе

Теплообменники типа труба в трубе относятся к тепловым аппаратам поверхностного типа.

Как устроен теплообменник типа труба в трубе?

Конструкция его довольно проста:

Чаще всего такой теплообменник состоит из нескольких звеньев, расположенных друг над другом и соединенных между собой. Чертеж теплообменника труба в трубе приводится ниже.

Схема теплообменника

  • Каждое звено такого теплообменника представляет собой конструкцию из вставленных друг в друга труб, между которыми и происходит теплообмен.
  • Наружная труба имеет больший диаметр и соединена с наружными трубами других звеньев, проложенные внутри нее трубы меньшего диаметра также последовательно соединяются между собой.
  • Небольшое поперечное сечение теплообменника позволят добиться высокой скорости движения теплоносителя в трубах, и в межтрубном пространстве.
  • Если теплообмена требует значительное количество теплоносителя, в конструкцию теплообменника включается несколько секций, которые объединяются между собой общими коллекторами.

Многосекционный теплообменник

Преимущества теплообменников «труба в трубе»

Несмотря на простоту конструкции труба в трубе теплообменники такого типа являются достаточно популярными.

Обусловлено это прежде всего очевидными преимуществами таких теплообменных устройств:

  • Во-первых, теплообменники, сконструированные по принципу «труба в трубе» позволяют обеспечить оптимальную скорость движения теплоносителя путем подбора труб водопровода соответствующего диаметра
  • Во-вторых, подобные теплообменники достаточно просты в изготовлении и уходе. Чистка таких теплообменников также достаточно несложна, что обеспечивает существенное продление срока и службы.
  • Кроме того, теплообменники «труба в трубе» обладают достаточной универсальностью: в качестве теплоносителя в такой системе может выступать не только жидкость, но и пар.

Недостатки теплообменников «труба в трубе»

К недостаткам теплообменников труба в трубе относятся:

  • Значительные габариты
  • Высокая стоимость (наружные трубы, не участвующие в теплообмене, а также — трубы для грунтового теплообменника, если таковые включаются в общую конструкцию, стоят довольно дорого)
  • Сложность в проектировке (расчет теплообменника труба в труба будет описан ниже)

Впрочем, данные недостатки уравновешиваются указанными выше достоинствами, потому такие теплообменники достаточно широко используются.

Монтаж

Монтаж пластинчатого теплообменника, как наиболее распространенного, осуществляется по трем вариантам:

  • параллельному;
  • смешанному двухступенчатому;
  • последовательному двухступенчатому.

При параллельном монтаже требуется установить терморегулятор. Этот способ экономит пространство, время, а также не требует больших затрат. Двухступенчатая смешанная схема обеспечивает значительную экономию теплоносителя. Это достигается благодаря использованию обратного тока теплой воды для обогрева потока с более низкой температурой.

Использование последовательной схемы применяет разделение входящего потока на две ветки. Одна из них проходит сквозь регулятор, другая – сквозь подогреватель. Далее оба потока смешиваются, после чего попадают в отопительный блок. Это экономит теплоноситель. Полная автоматизация оборудования невозможна.

Теплообменники закрепляются на стене с помощью крепежной ленты, консоли и уголка, прикрепленного к нижней части устройства. После этого требуется провести установку фильтров. Минимальное условие – присутствие фильтрующей системы в системе теплоцентрали. Перед установкой стоит подготовить краны и американки – резьбовые разъемные соединительные компоненты. Каждый из них включает в состав накидную гайку, прокладку и два фитинга

Важно правильно подбирать запчасти, чтобы они подходили к диаметру системы подключения. Тогда монтаж не вызовет затруднений

Внешний вид пластинчатого теплообменника

Классификация

Классификация теплообменников предусматривает их деление на такие виды:

  • пластинчатые;
  • трубчатые.

Пластинчатые устройства включают набор пластин с волнистыми каналами со штамповкой и поверхностями, предназначенными для циркуляции жидкостей. Пластины соединены при помощи прорезиненных прокладок и стяжек. Преимущества подобных устройств – легкость в применении и компактность.

Пластинчатые теплообменники находят все более широкое применение. Сфера их использования не ограничивается только промышленным оборудованием, возможен также монтаж этих устройств в жилых домах для монтажа отопительных систем.

Пластинчатые теплообменники классифицируются на группы:

  • неразборные (они же сварные и паяные);
  • полусварные;
  • разборные.

Разборные устройства наиболее популярны. В них пластины разделены при помощи резиновых уплотнителей. Установка не занимает много времени, а эксплуатация не вызывает трудностей.

Классический вариант пластинчатых теплообменников имеет входные и выходные патрубки на поверхности передней плиты. Некоторые устройства имеют патрубки и на передней, и на задней панелях. Рабочие среды подсоединяются к патрубкам посредством фланцевых, резьбовых, стальных соединений. Некоторые модели имеют меньшее количество патрубков, тогда теплоносители подсоединяются непосредственно к плите.

Трубчатые теплообменники включают трубы малого диаметра, вваренные в другие трубы. Достоинствами устройства считается применение в условиях повышения давления.

По критерию способа теплообмена техника подразделяется на смесительную и поверхностную. Устройства смесительного типа передают тепло при плотномконтактировании носителей. Поверхностные теплообменники содержат два контура, в которых происходит перемещение сред с отличными температурами. Обмен теплом между ними возможен через поверхностные элементы пластин, стенок, листов или труб, которые выполнены из теплопроводящих материалов (нержавеющей или высокоуглеродистой стали, сплавов цветных металлов). Этот тип оборудования применяется в жилищно-коммунальном хозяйстве, промышленных предприятиях и в организации малого бизнеса.

Поверхностные теплообменники делятся виды: рекуперативные и регенеративные. Рекуперативные теплообменники характеризуются константным обменом тепла посредством стенок контуров при однонаправленном движении носителей. В регенеративных устройствах происходит поочередный контакт носителей с теплообменивающей поверхностью.

Рекуперативные теплообменники тоже классифицируются:

  1. Погружные. Принцип работы предусматривает движение одного теплоносителя по змеевику, который погружен в бак, содержащий второй жидкий теплоноситель. Модель отличается удобством в применении, характеризуется оптимальной стоимостью.
  2. Оросительные. Сфера применения – как конденсаторы в системах охлаждения. Теплобменники выглядят как змеевики из горизонтальных труб, которые размещены в вертикальной плоскости. У каждого ряда труб есть желоб, по которому на них стекает вода пониженной температуры. Вода, которая не испарилась, возвращается в систему благодаря насосу.
  3. Витые. Представляют собой систему труб, намотанных на сердечник. Компактны и высокоэффективны.
  4. Спиральные. Для оборудования характерен вид двух спиральных каналов, которыми обвита центральная перегородка. Предназначены для охлаждения и нагрева вязких жидкостей.
  5. Кожухотрубные. Трубные решетки присоединены к кожуху посредством сварки. В них закрепляются трубы. Крепление их происходит плотно при помощи развальцовки. Решетки закрыты крышками на шпильках, болтах и прокладках. Кожух включает штуцера (патрубки). Принцип работы заключен в циркуляции носителя тепла в межтрубном пространстве и по трубам. Увеличение теплоотдачи происходит при помощи оребрения.
  6. Секционные – последовательность секций, которые представляют собой кожухотрубные устройства.
  7. Пластинчатые. Включают набор пластин с волнистыми поверхностями со штамповкой и каналами для движения жидкостей. Возможна работа только при пониженном давлении.

Кожухотрубный теплообменник

История появления и внедрения

Изобрели кожухотрубные теплообменники в начале прошлого века, дабы активно использовать при работе ТЭС, где большое количество нагретой воды перегонялось при повышенном давлении. В дальнейшем изобретение стали использовать при создании испарителей и нагревающих конструкций. С годами устройство кожухотрубного теплообменника совершенствовалось, конструкция стала менее громоздкой, ее теперь разрабатывают так, чтобы было доступно чистить отдельные элементы. Чаще стали применять подобные системы в нефтеперегонной промышленности и производстве бытовой химии, поскольку продукты этих отраслей несут в себе массу примесей. Их осадок как раз и требует периодической чистки внутренних стенок теплообменника.

Устройство кожухотрубного теплообменника подразумевает соединение сварных труб с доской и крышками, которое может быть разным, равно как и изгиб кожуха (в виде буквы U или W). Ниже представлены типы устройств, наиболее часто встречающиеся на практике.

Еще одной особенностью устройства является расстояние между трубами, которое в 2-3 раза должно превышать их сечение. Благодаря чему коэффициент отдачи тепла является небольшим, и это способствует эффективности всего теплообменника.

Исходя из названия, теплообменник – это устройство, создаваемое с целью передать вырабатываемое тепло на нагреваемый предмет. Теплоносителем в данном случае выступает конструкция, описанная выше. Работа кожухотрубного теплообменника заключается в том, что холодная и горячая рабочие среды двигаются по разным кожухам, и теплообмен происходит в пространстве между ними.

Рабочей средой внутри труб является жидкость, в то время как горячий пар проходит в расстоянии между труб, образуя конденсат. Поскольку стенки труб нагреваются больше, чем доска, к которой они прикреплены, эту разность необходимо компенсировать, иначе бы устройство имело значительные потери тепла. Для этого применяются так называемые компенсаторы трех типов: линзы, сальники или сильфоны.

Также, при работе с жидкостью под высоким давлением используют однокамерные теплообменники. Они имеют изгиб U, W-образного типа, необходимое чтобы избежать высоких напряжений в стали, вызываемых тепловым удлинением. Их производство достаточно дорогое, трубы в случае ремонта сложно заменить. Поэтому такие теплообменники пользуются меньшим спросом на рынке.

В зависимости от способа крепления труб к доске или решетке, выделяют:

  • Приваренные трубы;
  • Закрепленные в развальцованных нишах;
  • Соединенные болтами с фланцем;
  • Запаянные;
  • Имеющие сальники в конструкции крепежа.

По типу конструкции кожухотрубные теплообменники бывают :

  • Жесткие (буквы на рис. а, к), нежесткие (г, д, е, з, и) и наполовину жесткие (буквы на рис. б, в и ж);
  • По количеству ходов – одно- или многоходовые;
  • По направлению тока технической жидкости – прямого, поперечного или против направленного тока;
  • По расположению доски горизонтальные, вертикальные и расположенные в наклонной плоскости.

Строение и принцип работы

Механизм действия легко рассмотреть на примере пластинчатого теплообменника заводской сборки. Структура предусматривает два контура и четыре выхода. Пластинчатое устройство разделяет потоки по давлению и температуре. Теплоносителями выступают кислоты и другие жидкости.

Теплообменники для отопления предполагают подключение к одному контуру теплых полов, а к другому – теплоцентрали.

Прямое подключение центрального теплоносителя невозможно, поскольку это приводит к выходу из строя теплого напольного покрытия.

Это происходит из-за повышения давления в теплоцентрали, температурных перепадов и присутствия химически агрессивных веществ в теплоносителе.

Строение теплообменника представлено на рисунке ниже.

Схематичное устройство пластинчатого теплообменника

Структуру теплообменника составляют:

  • станина, которая с одной стороны устройства прикрепляется к неподвижной прижимной плите и служит элементом опоры;
  • пакет пластин, образующий между составляющими элементами каналы для теплоносителя;
  • рама, которая состоит из подвижной прижимной плиты , неподвижной прижимной плиты и задней стойки;
  • кожух, служащий для защиты устройства от внешних воздействий;
  • шпильки, которые размещены по краю отверстий, через которые в устройство поступает теплоноситель;
  • прокладка, необходимая для герметичности каналов;
  • опорные и крепежные элементы (направляющие балки, несущая база, лапы станины и рамы, подшипники, болты, гайки, шайбы).

Синие и красные стрелки на рисунке обозначают направления движения холодного и горячего теплоносителя внутри теплообменника соответственно.

В быту применяют теплообменник, чей принцип функционирования основан на разделении потоков и поддержании автономного функционирования теплых полов при пониженном уровне рабочего давления в 1,5 бара и подключении чистой воды.

Структуру теплообменного оборудования составляют три группы пластин:

  1. Набранные, принадлежащие автономной системе отопления с пониженным уровнем давления.
  2. Набранные, принадлежащие центральной системе отопления с повышенным уровнем температуры и давления.
  3. Разделительные, характеризующиеся малой толщиной и передающие тепло от централизованной системы к автономной.

Число и параметры пластин предопределяют мощность теплообменного оборудования. Каждое устройство предполагает установку очистительного фильтра. Он способен удержать грубые частицы: окалины, стружку и прочие. Фильтр нуждается в периодическом промывании очистительными растворами.

Принцип работы теплообменника

Принцип работы теплообменника заключается в передаче тепловой энергии от одного теплоносителя к другому. В устройство поступает прямая греющая среда и холодная среда. При прохождении их между пластинами по каналам происходит нагревание холодной среды. На выходе из теплообменника получают нагретую среду и обратную греющую среду. Внутри оборудования теплообменивающие жидкости движутся навстречу друг другу, то есть в противотоке, и не могут смешиваться, поскольку разделены пластинами.

Недостаток от «бюджетного преимущества» аппарата: как его устранить?

Однако, отмечая дешевизну теплообменника как безусловное преимущество, нельзя забывать об «обратной стороне медали». Простые конструкции теплообменников уступают более дорогим аналогам по теплотехническим характеристикам. Достаточно сравнить ТТ с другими кожухотрубными аппаратам, малобюджетной разновидностью которых, собственно говоря, он является. Как гласит мудрость: «Если в одном месте прибавилось, то в другом убавится».

В данном случае слабость конструкции «труба в трубе» проявилось в недостаточной площади поверхности теплообмена гладких труб, что ограничивает применение агента в паре «газ-газ»/«газ-жидкость». При сниженных установочных затратах применение таких аппаратов увеличивает расходы в процессе эксплуатации теплового оборудования.

Однако существует ряд превентивных мер и конструктивных доработок действие которых, если не устраняет полостью, то значительно нивелирует указанный недостаток. Они особенно интенсифицируют теплоотдачу в системах, прокачивающих «жидкость-жидкость», заметно снижая стоимость на единицу поверхности процесса:

• подбор теплоносителя с высокой удельной теплоемкостью;

• использование противотока агентов (прокачки потоков во встречных направлениях);

• применение насосов/компрессоров наряду с конвекцией для транспортировки теплоносителя со скоростью до 3 м/c;

• увеличение межтрубного кольцевого пространства в изделиях до 20–30 мм:

• локализация ребристых и ошипованных труб увеличенной площади соприкосновения с теплоносителем;

• использование реверсирования потоков для периодической очистки от загрязнений кольцевого пространства и теплообменных труб.

Какой теплоноситель использовать в агрегате?

Если теплоноситель не является продуктом переработки, а его выбор однозначно не предусмотрен технологическим процессом, могут применяться различные жидкие и газообразные агенты. В адаптированных к определенному носителю системах ГВС или парогазового отопления с оборудованием сочетаются следующие теплоносители. Они расположены в порядке убывания частоты применения в агрегатах этого вида:

• вода как теплоноситель с низкой вязкостью и высокой удельной теплоемкостью 4,2 кДж/кг * °С оптимально подходит под данный тип тепловых аппаратов;

• водяной пар обладает высоким удельным теплосодержанием, в случае охлаждения до 100°С и переходе в другое агрегатное состояние выделяет 2260 кДж/кг высвобождаемой энергии (скрытая теплота конденсации);

• топочные газы образуются в результате сжигания твердого или газообразного топлива, требуют больших поверхностей теплоотдачи, поэтому использование в данном типе теплообменников агента не столь эффективно при рециркуляции;

• высококипящие промышленные теплоносители с температурой кипения до 420°С и «незамерзайки» (антифриз, этиленгликоль, глицерин, органические и минеральные масла) имеют высокую теплоотдачу, но некоторые требуют дополнительных затрат на прокачку в гидравлическом тракте по причине повышенной вязкости;

• теплообменные аппараты часто заправляют дифинольной смесью на основе 26,5% дифинила и 73,5% одноименного спирта, она используется в 40% технологических установок и представляет прозрачную жидкость специфического янтарного цвета с высокой теплоемкостью.

В отопительных системах вязкость теплоносителя является часто определяющим параметром в пользу выбора того или иного теплового носителя. Ввиду серьезных затрат на дополнительную установку компрессоров и насосного оборудования, высокой стоимости потребляемой электроэнергии на прокачку агента эта статья расходов существенно влияет на тарифы за отопление.

Поэтому учитываются не только конструктивные возможности тепловых агрегатов по использованию того или иного агента в, но и подсчитывается эффективность работы системы теплоснабжения

Особенно на это обращают внимание при устройстве индивидуальных тепловых пунктов (ИТП) частных домовладений и котельных многоквартирных жилых домов (МКД)

В каких сферах используется теплообменник

Сфера использования теплообменников очень обширная:

  • системы отопления;
  • системы охлаждения;
  • при работе с химикатами;
  • с солнечными коллекторами;
  • для обогрева бассейнов;
  • системы вентиляции;
  • системы кондиционирования;
  • в сфере машиностроения;
  • металлургическая промышленность;
  • фармацевтическая промышленность;
  • пищевая промышленность (сахарная, пивная, молочная и прочие);
  • автомобильная промышленность;
  • химическая промышленность.

Устройство и принцип работы теплообменников влияет на работу различных сфер, среди которых как промышленное производство, так и объекты общественного и культурного значения. Вместе с этим их использование возможно и в системах отопления частных жилых домов, где вопрос поддержки температуры стоит наиболее остро. Установка и монтаж теплообменников может быть произведён как самостоятельно, так и при помощи специалистов. Смысл же устройства состоит в равномерном распределении тепла на помещение.

Подписывайтесь так же на наш Youtube, группу , . Там много полезного и интересного контента!

Устройство и виды

Отличительная особенность теплообменника – два вида вещества изолированы друг от друга, одно из которых нагревается, другое – охлаждается. Внутри аппарата они обмениваются между собой тепловой энергией. В зависимости от температурных потребностей теплообменники бывают двух типов: нагреватели и холодильники.

Конструкции теплообменных аппаратов делятся на три вида:

1. Простой тип VLO – внутри основной трубы проходит одна поменьше.

2. Тип VLM – в одной трубе несколько маленьких.

3. Специальный тип VLA – для продуктов особой вязкости.

По способу передачи тепла теплообменники делятся на:

· поверхностные – обмен тепловой энергией происходит через разделительную стенку между двумя резервуарами;

· регенеративные – чередование этапов нагрева и охлаждения;

· смесительные – теплообмен осуществляется путем смешивания двух веществ.

Самый распространенный тип теплообменников — кожухотрубный. Труба заключена в кожух для более высокой теплоотдачи. Наиболее эффективен на крупных производственных предприятиях, предусмотрен для работы в условиях перепадов давления. Используется кожухотрубный агрегат в паровых системах, с агрессивными газами и жидкостями.

Кожухотрубчатые теплообменные аппараты используются на заводах различных типов производства. Популярны за счет простоты конструкции, доступности материалов и эффективности в работе.

Классифицируют кожухотрубчатые и кожухотрубные теплообменные аппараты по функциональным особенностям:

· универсальные теплообменники;

· испарители;

· конденсаторы;

· холодильники.

Также разделяют кожухотрубные и кожухотрубчатые агрегаты по типам конструкции (закрепленные, У-образные и плавающие) и расположению (горизонтальные и вертикальные).

Что такое рекуператор, и как он работает

Принцип работы вентиляционной системы – создание воздушного потока, который проходит по всему помещению от нижней точки (ближе к полу) к верхней (ближе к потолку). Обе точки располагают на противоположных стенах, чтобы эффективность работы вентиляции была высокой. Из нижней точки свежий воздух поступает внутрь комнат, из верхней отработанный удаляется наружу.

Сделать рекуператор для частного дома своими руками несложно. Главное – надо понять, как он работает. Во-первых, сразу следует обозначить, что слово “рекуператор” не русское, а латинское. И переводится оно – возвращение чего-либо.

Рекуператор – это не часть воздушного отопления, это элемент вентиляции (не самый дорогой). И рассчитывать, что он поможет обогреть частный дом, не стоит.

Экономическая выгода от его работы зависит от четырех факторов:

  • деньги, которые были затрачены на монтаж;
  • деньги, потраченные на обслуживание;
  • время эксплуатации системы;
  • тип топлива, используемый для отопления частного дома.

Виды ТО

Схема и принцип работы рекуперативного теплообменника

По принципу работы оборудование делится на рекуперативное и регенеративное. В первых движущиеся теплоносители разделены стенкой. Это самый распространенный вид, он может быть различных форм и конструкций. Во втором случае с одной и той же поверхностью по очереди контактируют горячий и холодный теплоносители. Высокая температура нагревает стенку оборудования во время контакта с горячей средой, далее температура передается холодной жидкости при контакте с ней.

По назначению ТО делятся на два вида: охладительные – работают с холодной жидкостью или газом, остужая при этом горячий теплоноситель; и нагревательные – взаимодействуют с разогретой средой, отдавая энергию потокам холодной.

По конструкции теплообменники бывают нескольких видов.

Разборные

Состоят из рамы, двух концевых камер, отдельных пластин, разделенных термостойкими прокладками и крепежных болтов. Такое оборудование отличается простотой очистки и возможностью увеличения эффективности путем добавления пластин. Но разборные ТО чувствительны к качеству воды. Для продления срока их службы требуется установка дополнительных фильтров, что увеличивает стоимость проекта.

Пластинчатые

Пластинчатый теплообменник нуждается в установке дополнительных фильтров на теплоноситель

Отличаются методом соединения внутренних пластин:

  • В паяных ТО гофрированные пластины из нержавеющей стали толщиной 0,5 мм сделаны путем холодной штамповки. Между ними устанавливается прокладка из специальной термостойкой резины.
  • В сварных пластины свариваются и образуют кассеты, которые затем компонуются внутри стальных плит.
  • В полусварных ТО кассеты скрепляются посредством паронитовых соединений в конструкции из небольшого количества сварных модулей. Эти модули уплотняются резиновыми прокладками и соединяются лазерной сваркой. После чего собираются между двумя плитами при помощи болтов.

Пластинчатые теплообменники используются в условиях повышенного давления и экстремальных температурах. Такие устройства требуют минимального технического обслуживания, экономичны и отличаются высокой эффективностью. Кроме того, по необходимости можно увеличить или уменьшить эффективность оборудования путем увеличения или уменьшения количества стальных пластин.

Единственным недостатком теплообменника из гофрированной нержавейки служит чувствительность к качеству теплоносителя, необходима установки дополнительных фильтров.

Кожухотрубные

Состоят из цилиндрического корпуса, куда помещены пучки трубок, собранных в решетки. Концы труб крепятся развальцовкой, сваркой или пайкой. Достоинством такого оборудования служит нетребовательность к качеству теплоносителя и возможность использования в технических процессах, где присутствуют агрессивные среды и высокое давление (в нефтяной, газовой, химической промышленности). Недостатки кожухотрубных ТО – относительно низкая теплоотдача, большие габариты, высокая стоимость и сложность в ремонте.

Спиральные

Состоят из двух листов металла, свернутых в спирали. Внутренние края соединены перегородкой и закреплены штифтами. Такие теплообменники компактны и обладают эффектом самоочистки. Они способны работать с жидкими неоднородными средами, любого качества. При повышении скорости движения жидкости, увеличивается интенсивность теплообмена. Недостатки: сложность в изготовлении и ремонте, ограничение давления рабочей жидкости до 10 кгс/см².

Двухтрубные и труба в трубе

Схема теплообменника «труба в трубе»

Первые состоят из труб разного диаметра. В качестве теплоносителя используется жидкость и газ. Устройства используются в местах с повышенным давлением, имеют высокий уровень теплоотдачи. Отличаются простотой монтажа и обслуживания. Единственный недостаток – высокая стоимость.

Теплообменник «труба в трубе» состоит из двух труб разного диаметра, соединенных между собой. Они используются при небольшом расходе теплоносителя и чтобы оборудовать дымоход.

Проектировка теплообменника «труба в трубе»

Первый этап изготовления устройства — это теплотехнический расчет и схема теплообменника. В первую очередь подбирают материал, из которого изготовят агрегат. От теплопроводности трубы зависит эффективность механизма в целом.

Расчет теплообменников подразумевает вычисление следующих параметров:

  • от размера внутренней трубы зависит площадь внешней поверхности теплообменника. Теплообмен будет эффективнее, если увеличить эту площадь.
  • необходимо вычислить температурную разницу между теплоносителем и контактной средой. Чем выше разница, тем эффективнее теплообмен.
  • скорость перемещения веществ внутри устройства зависит от формы трубопровода. Кроме того, вычисляют оптимальную скорость перемещения веществ. Без правильного баланса устройство не сможет функционировать надлежащим образом.

ПОСМОТРЕТЬ ВИДЕО

Для изготовления агрегата используют нержавеющие материалы: медь и в редких случаях нержавеющую сталь. Это связано с тем, что теплоноситель способствуют образованию ржавчины внутри устройства.  Теплообменники для отопления — необходимые агрегаты для промышленности.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Это лофт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: