Длина материала в зависимости от радиуса гибки. радиус гиба труб: минимальные радиусы изгиба, гибки стальной, медной трубы, как рассчитать загиб, правила

Пластиковые трубы

Сгибание пластика является довольно сложной процедурой, так как постоянно присутствует угроза повреждения материала и снижения толщины стенок. Более оптимальным решением является приобретение специального поворотного переходника. Если по какой-то причине использовать угольник не получается, процедура сгибания пластиковой трубы проводится при помощи строительного фена.

Оптимальным температурным режимом в данном случае является 140 градусов. Прогревание сгибаемого участка должно осуществляться не спеша, чтобы не допустить перегревания. Дело в том, что при температуре 175 градусов пластик обычно начинает плавиться.

После того, как изделие приобретет необходимую пластичность, его осторожно сгибают. Чтобы толщина внешних стенок не поменялась, ее обкладывают небольшим кусочками пластика, и тоже прогревают. Таким образом осуществляется их приваривание, а участок в колене получает дополнительную защиту от прорыва.

Таким образом осуществляется их приваривание, а участок в колене получает дополнительную защиту от прорыва.

Итоги

Трубопроводы делают жизнь людей намного комфортнее и эффективнее, при чем это касается как бытовой, так и промышленной сферы. Обустраивая различные коммуникации, почти невозможно избежать поворотов и изгибов, для организации которых применяются различные приспособления и методы

В процессе работы по сгибанию труб из различных материалов очень важно избегать спешки, четко соблюдая правила гибки труб. 

Как рассчитать изгиб и выбрать приспособления для гибки

Приборы для гибки труб выбираются согласно материалу и сечению заголовок.

Поэтому, если вы собираетесь гнуть медные изделия, то вам станет достаточно простых механических приборов. Это могут быть: ручные, гидравлические, рычажные трубогибы. Способны справляться с гнутьем до 3 дюймов диаметра.

К примеру, для профилированных труб, в отличие от круглых, необходимо прикладывать больше усилий и физического труда.

Поэтому для них используют устройства с большим радиусом работы. Трубы круглого сечения также требуют высокотехнологического оборудования. Отечественные производители предлагают перечень различных устройств, которые вовсе не уступают зарубежным вариантам.

Радиус гиба трубы приспособления для получения в быту и промышленности

На строительном рынке можно обнаружить большое количество приспособлений индивидуального использования для изгибания труб, от простейших пружин до сложных электромеханических станков с гидравлической подачей.

Ручные трубогибы

Трубогибы данного класса обладают невысокой стоимостью, имеют простую конструкцию, малый вес и габариты, процесс изгибания заготовки происходит за счет физического усилия работника. По принципу работы ручные агрегаты, выпускаемые промышленностью, можно разбить на следующие категории.

Рычажные. Изгибание производится за счет большого рычага, позволяющего уменьшить прилагаемое мышечное усилие. В таких устройствах заготовка вставляется в оправку заданной формы и размера (пуансон) и с помощью рычага происходит огибание шаблонной поверхности изделием – в результате получается элемент заданного профиля. Рычажные устройства позволяют получать радиус закругления в 180 градусов и подходят для труб из мягких металлов небольшого диаметра (до 1 дюйма). Для получения закруглений различного размера используют сменные пуансоны, для облегчения проведения работ многие модели оснащаются гидроприводом.

Рис. 7 Арбалетные приспособления ручного типа

Арбалетные. При работе заготовка помещается на два валика или упора, а изгибание происходит давлением на ее поверхность между упорами пуансона заданной формы и сечения. Агрегаты имеют сменные пуансонные насадки и передвижные упоры, позволяющие задавать радиус изгиба стальной трубы или заготовок из цветных металлов.

Гибочный башмак установлен на штоке, который может перемещаться с помощью винтовой передачи, гидравлического давления жидкости при ручном нагнетании или посредством гидравлики с электроприводом. Подобные устройства позволяют производить изгибание труб из мягких материалов диаметром до 100 мм.

Трехроликовые агрегаты (трубогибочные вальцы). Являются самым распространенным типом трубогибочных агрегатов в быту и промышленности, работают по принципу холодной вальцовки. Конструктивно выполнены в виде двух роликов, в ручьи которых устанавливается заготовка, третий ролик постепенно подводят к поверхности, одновременно прокатывая изделие в разные стороны. В результате происходит деформация заготовки без складкообразования большего сечения, чем в других ручных трубогибах.

Отличительной особенностью агрегата является невозможность получения малого радиуса закругления (обычное значение 3 – 4 величины внутреннего диаметра).

Все перечисленные устройства являются бездорновыми агрегатами, поэтому неэффективны при гибке тонкостенных изделий, также их нежелательно использовать при работе с заготовками со сварным стыком стенок – при пластический деформации возможно раскрытие отдельных участков шва.

Рис. 8 Трубогибочные вальцы

Электромеханические трубогибы

Электромеханические агрегаты в основном используются в промышленности и обеспечивают выполнение следующих технологических процессов.

Бездорновая гибка. Станки применяются при работе с заготовками, для радиусов гиба 3 – 4 D., способны изгибать толстостенные трубы для мебельной и строительной отрасли, магистральных трубопроводов. Станки имеют самую простую конструкцию и управление по сравнению с другими видами, отличаются малыми габаритными размерами и весом.

Бустерная обработка. Агрегаты, работающие по специальной технологии продвижения каретки с деталью дополнительным узлом, разработаны для получения сложных гибов без утоньшения стенок. Применяются для изготовления змеевиков различной формы в тепловой энергетике, котельной и водонагревательной индустрии.

Дорновая гибка. Агрегаты данного типа позволяют производить высококачественное изгибание тонкостенных элементов с наружным диаметром до 120 мм. Промышленные станки могут иметь автоматическое или полуавтоматическое исполнение с числовым программным управлением.

Трехвалковая гибка. Конструкция широко используется для изгибания любых металлов и сплавов, отличается универсальностью: отлично справляется с профилем круглого или прямоугольного сечения, уголками и плоскими пластинами. Многофункциональность агрегата достигается за счет смены валков с различным видом рабочих поверхностей и размеров.

При помощи данного агрегата удобно гнуть элементы большой длины с одинаковым большим радиусом закругления на всем протяжении.

Рис. 9 Промышленные трубогибы

Гибка в штампах при помощи прессования

Сгибание заготовок, длиной не более 70 сантиметров, можно осуществлять при помощи штампования. В данном случае используются гидравлические либо механические прессы. Этот способ позволяет изготавливать элементы конструкций со сложной формой.

Прессование заготовок является самым дорогим способом гибки. Однако и производительность его наиболее высокая. Данный метод позволяет производить широчайший сортамент продукции.

Трубогибочное станочное оборудование

Гибка труб в промышленных масштабах осуществляется с помощью станков.

Гибка вальцеванием. Наиболее распространены станки, гнущие изделия при помощи вальцевания. Чаще всего применяется оборудование с тремя валками, предназначенное для изгибания длинных заготовок. На нем может делаться спиральный трубный прокат.

Изделие двигается через ролики, местоположение которых определяет радиус его изгиба. Одновременно оно с обеих сторон сжимается деформирующим цилиндром. Он расположен между валиками, так, чтобы была возможность гнуть заготовку на весу. Ролики в процессе обработки металла выполняют функцию опоры.

Обработка сжатием

Нередко на производстве применяются станки, гнущие заготовки с малым радиусом способом сжатия. На них обрабатываются заготовки малого и большого сечения. Процесс происходит с местным разогревом изделий и одновременным осевым давлением на них.

Станок состоит из:

  • станины с расположенным на ней нагревателем;
  • опорного ролика;
  • пары клещевых зажимов, первый из них — гибочный поворотный, второй — осадочный.

Устройство способно гнуть элементы под углом 180º. Оно зажимает заготовки с постоянным усилием независимо от их сечения и значения осевого усилия, образующегося в эпицентре деформации при изгибе изделия. Оборудование может обрабатывать квадратный и прямоугольный профиль.

Ротационно-вытяжная гибка

Ротационная вытяжка труб производится на станках с электрическими либо гидравлическими суппортами для передвижения давящих роликов. Последние служат для получения нужной конфигурации и толщины производимого элемента.

При ротационной вытяжке получают изделия из полых вращающихся стержней, деформируемых валиками по перемещающейся оправке. Сейчас в большинстве случаев используются ротационно-вытяжные станки с ЧПУ. Их программа учитывает сопротивление материала при его деформировании. При изготовлении продукции используется соответствующий ГОСТ.

Заключение

В небольших объемах гибка труб может производиться при помощи ручного инструмента. В промышленных масштабах это делается на специальных станках. Перед работой необходимо осуществить расчеты минимально допустимого радиуса гибки.

Трубопроводы и соединения.

Радиусы гиба труб

Наименьшие радиусы гиба труб и наи­меньшие длины прямых участков изогнутых труб показаны на рис. 1.

Длину изогнутого участка трубы А опреде­ляют по формуле

A = πa 180 R + D н 2

где R — наименьший радиус изгиба, мм; D н — наружный диаметр трубы, мм.

При выборе радиуса изгиба следует по возможности предпочитать для изгиба трубы в холодном состоянии.

Размеры минимальных радиусов гиба стальных труб в зависимости от наружного диаметра и толщины стенки, а также предель­ные размеры складок приведены в табл. 18.

Минимальные радиусы гиба труб назнача­ют в технически обоснованных случаях. При этом должны выполняться следующие требо­вания:

1. Предельные значения овальности в мес­те изгиба не должны превышать указанных в табл. 18.

2. Толщина стенки трубы в зоне изгиба с наружной стороны изгиба должна составлять не менее 80% исходной толщины.

3. Размеры складок на внутренней (сжатой) стороне трубы не должны превышать указан­ных в табл. 18.

Толщина стенок с наружной и внутренней стороны изгиба трубы определяется по формулам:

S н = 1- 1- S D н 2 R CP D н ; S B = 1+ 1- S D н 2 R CP D н

где S — исходная толщина стенки трубы; D н — наружный диаметр трубы (исходный), мм; R — средний радиус гиба , мм.

При заданном предельно допустимом утоньшении (уменьшении толщины) S н /S ≤ 0,2, средний радиус гиба определяется по формуле:

R ср = D н 1- S / D н 2(- S н / S ) .

Данные приведены для труб с относитель­ной толщиной стенки 0,04 ≤ S/ D н ≤ 0,05 из материалов с временным сопротивлением σв ≤ 600МПа в отожженном (мягком) состоянии.

В табл. 19 приведены размеры минималь­ных радиусов гиба водогазопроводных труб, в табл. 20 — медных труб по ГОСТ 617-90 и ла­тунных по ГОСТ 494-90.

18. Радиусы гиба стальных труб в зависимости от их диаметра и толщины стенок, мм

Диаметр трубы DH

Минимальный радиус гиба R при толщине стенки

Какая нагрузка действует на профильную трубу

Другой вопрос, как рассчитать размеры профильной трубы так, чтобы обойтись «малой кровью», купить подходящую по нагрузке трубу. Для изготовления перил, оградок, теплиц можно обойтись без расчетов. Но если вы строите навес, кровлю, козырек, без серьезных расчетов нагрузки не обойтись.

Каждый материал сопротивляется воздействию внешних нагрузок, и сталь – не исключение. Когда нагрузка на профильную трубу не превышает допустимых значений, то конструкция согнется, но выдержит нагрузку. Если вес груза убрать, профиль примет исходное положение. В случае превышения допустимых значений нагрузки труба деформируется и остается такой навсегда, либо разрывается в месте сгиба.

Чтобы исключить негативные последствия, при расчете профильной трубы учитывайте:

  1. размеры и сечение (квадратное или прямоугольное);
  2. напряжение конструкции;
  3. прочность стали;
  4. типы возможных нагрузок.

Классификация нагрузок на профильную трубу

Согласно СП 20.13330.2011 по времени действия выделяют следующие типы нагрузок:

  1. постоянные, вес и давление которых не меняется со временем (вес частей здания, грунта и т.д.);
  2. временные длительные (вес лестницы, котлов в коттедже, перегородок из гипсокартона);
  3. кратковременные (снеговые и ветровые, вес людей, мебели, транспорт и т.д.);
  4. особые (землетрясения, взрывы, удар машины и т.д).

К примеру, вы сооружаете навес во дворе участка и используете профильную трубу как несущую конструкцию. Тогда при расчете трубы учитывайте возможные нагрузки:

  1. материал для навеса;
  2. вес снега;
  3. сильный ветер;
  4. возможное столкновение автомобиля с опорой во время неудачной парковки во дворе.

Для этого воспользуйтесь СП 20.13330.2011 «Нагрузки и воздействия». В ней есть карты и правила, необходимые для правильного расчета нагрузки профиля.

Расчетные схемы нагрузки на профильную трубу

Кроме типов и видов нагрузки на профили, при расчете трубы учитываются виды опор и характер распределения нагрузки. Калькулятор рассчитывает, используя только 6 типов расчетных схем.

Максимальные нагрузки на профильную трубу

Некоторые читатели задаются вопросом: «Зачем делать такие сложные расчеты, если мне нужно сварить перила для крыльца». В таких случаях нет необходимости в сложных расчетах с учетом нюансов, так как можно прибегнуть к готовым решениям (таб. 1, 2). Таблица 1. Нагрузка для профильной трубы квадратного сечения

Размеры профиля, мм Максимальная нагрузка, кг с учетом длины пролета
1 метр 2 метра 3 метра 4 метра 5 метров 6 метров
Труба 40х40х2 709 173 72 35 16 5
Труба 40х40х3 949 231 96 46 21 6
Труба 50х50х2 1165 286 120 61 31 14
Труба 50х50х3 1615 396 167 84 43 19
Труба 60х60х2 1714 422 180 93 50 26
Труба 60х60х3 2393 589 250 129 69 35
Труба 80х80х3 4492 1110 478 252 144 82
Труба 100х100х3 7473 1851 803 430 253 152
Труба 100х100х4 9217 2283 990 529 310 185
Труба 120х120х4 13726 3339 1484 801 478 296
Труба 140х140х4 19062 4736 2069 1125 679 429

Таблица 2. Нагрузка для профильной трубы прямоугольного сечения (рассчитывается по большей стороне)

Размеры профиля, мм Максимальная нагрузка, кг с учетом длины пролета
1 метр 2 метра 3 метра 4 метра 5 метров 6 метров
Труба 50х25х2 684 167 69 34 16 6
Труба 60х40х3 1255 308 130 66 35 17
Труба 80х40х2 1911 471 202 105 58 31
Труба 80х40х3 2672 658 281 146 81 43
Труба 80х60х3 3583 884 380 199 112 62
Труба 100х50х4 5489 1357 585 309 176 101
Труба 120х80х3 7854 1947 846 455 269 164

Пользуясь готовыми расчетами, помните, что в таблицах 2 и 3 указана максимальная нагрузка, от воздействия которой труба согнется, но не сломается. При ликвидации нагрузки (прекращение сильного ветра) профиль вновь обретет первоначальное состояние. Превышение максимальной нагрузки даже на 1 кг ведет к деформации или разрушению конструкции, поэтому покупайте трубу с запасом прочности, в 2 – 3 раза превышающим предельное значение.

Радиус гиба трубы приспособления для получения в быту и промышленности

На строительном рынке можно обнаружить большое количество приспособлений индивидуального использования для изгибания труб, от простейших пружин до сложных электромеханических станков с гидравлической подачей.

Ручные трубогибы

Трубогибы данного класса обладают невысокой стоимостью, имеют простую конструкцию, малый вес и габариты, процесс изгибания заготовки происходит за счет физического усилия работника. По принципу работы ручные агрегаты, выпускаемые промышленностью, можно разбить на следующие категории.

Рычажные. Изгибание производится за счет большого рычага, позволяющего уменьшить прилагаемое мышечное усилие. В таких устройствах заготовка вставляется в оправку заданной формы и размера (пуансон) и с помощью рычага происходит огибание шаблонной поверхности изделием – в результате получается элемент заданного профиля. Рычажные устройства позволяют получать радиус закругления в 180 градусов и подходят для труб из мягких металлов небольшого диаметра (до 1 дюйма). Для получения закруглений различного размера используют сменные пуансоны, для облегчения проведения работ многие модели оснащаются гидроприводом.

Рис. 7 Арбалетные приспособления ручного типа

Арбалетные. При работе заготовка помещается на два валика или упора, а изгибание происходит давлением на ее поверхность между упорами пуансона заданной формы и сечения. Агрегаты имеют сменные пуансонные насадки и передвижные упоры, позволяющие задавать радиус изгиба стальной трубы или заготовок из цветных металлов.

Гибочный башмак установлен на штоке, который может перемещаться с помощью винтовой передачи, гидравлического давления жидкости при ручном нагнетании или посредством гидравлики с электроприводом. Подобные устройства позволяют производить изгибание труб из мягких материалов диаметром до 100 мм.

Трехроликовые агрегаты (трубогибочные вальцы). Являются самым распространенным типом трубогибочных агрегатов в быту и промышленности, работают по принципу холодной вальцовки. Конструктивно выполнены в виде двух роликов, в ручьи которых устанавливается заготовка, третий ролик постепенно подводят к поверхности, одновременно прокатывая изделие в разные стороны. В результате происходит деформация заготовки без складкообразования большего сечения, чем в других ручных трубогибах.

Отличительной особенностью агрегата является невозможность получения малого радиуса закругления (обычное значение 3 – 4 величины внутреннего диаметра).

Все перечисленные устройства являются бездорновыми агрегатами, поэтому неэффективны при гибке тонкостенных изделий, также их нежелательно использовать при работе с заготовками со сварным стыком стенок – при пластический деформации возможно раскрытие отдельных участков шва.

Рис. 8 Трубогибочные вальцы

Электромеханические трубогибы

Электромеханические агрегаты в основном используются в промышленности и обеспечивают выполнение следующих технологических процессов.

Бездорновая гибка. Станки применяются при работе с заготовками, для радиусов гиба 3 – 4 D., способны изгибать толстостенные трубы для мебельной и строительной отрасли, магистральных трубопроводов. Станки имеют самую простую конструкцию и управление по сравнению с другими видами, отличаются малыми габаритными размерами и весом.

Бустерная обработка. Агрегаты, работающие по специальной технологии продвижения каретки с деталью дополнительным узлом, разработаны для получения сложных гибов без утоньшения стенок. Применяются для изготовления змеевиков различной формы в тепловой энергетике, котельной и водонагревательной индустрии.

Дорновая гибка. Агрегаты данного типа позволяют производить высококачественное изгибание тонкостенных элементов с наружным диаметром до 120 мм. Промышленные станки могут иметь автоматическое или полуавтоматическое исполнение с числовым программным управлением.

Трехвалковая гибка. Конструкция широко используется для изгибания любых металлов и сплавов, отличается универсальностью: отлично справляется с профилем круглого или прямоугольного сечения, уголками и плоскими пластинами. Многофункциональность агрегата достигается за счет смены валков с различным видом рабочих поверхностей и размеров.

При помощи данного агрегата удобно гнуть элементы большой длины с одинаковым большим радиусом закругления на всем протяжении.

Рис. 9 Промышленные трубогибы

Технические характеристики

Диапазон рабочей температуры трубы из полиэтилена от 0 до 40°С, исключением является сшитый полиэтилен, для которого верхний предел +95°С.

Максимальное рабочее давление трубопровода до 25 атмосфер. Это не касается гофрированных и ПВД изделий.

Диаметр от 20 до 1600 мм, соответственно толщина стенок 2 — 60 мм. При этом диаметр изделия считается по наружному габариту, а внутренний размер, определяющий пропускную способность, зависит от толщины стенки и вычисляется отдельно, простым вычитанием (общий диаметр минус 2 толщины стенки).

Поставляется преимущественно в бухтах или отрезках по 6 метров.

Плотность полиэтилена

Цифровой индекс в маркировке ПЭ труб отражает плотность материала. Стандартный показатель, в зависимости от способа изготовления, находится в пределах 910-956 кг/м3. Различная плотность достигается введением в состав сополимеров и изменением условий полимеризации.

Материал легче воды и в 8 раз легче стали (плотность стали 7900 кг/м3). Часто такая особенность определяет выбор в пользу именно ПЭ продукции.

ПЭ32 — наименьший показатель плотности (устаревший материал).

Продукция с маркировкой ПЭ63, 80, 100 или 100+ обладает большей плотностью и соответственно готова к большей нагрузке. Если ПЭ63 подходит для создания систем во внутренних помещениях, плохо противостоит перепадам температур и давления, то ПЭ100+ способна выполнять задачи в промышленных условиях, применяется в водопроводных и газовых магистралях.

Срок службы полиэтиленовых труб

Требования ГОСТа допускают использование трубопроводов из полимеризованного этилена на протяжении 50 лет, при соблюдении температуры транспортируемой жидкости до 40°С .

Отсутствие коррозии и биологического разрушения подкрепляют уверенность в том, что реальная жизнеспособность ПЭ превышает 50-летний гарантийный срок.

Коэффициент шероховатости

Внутренняя стенка ПЭ обладает коэффициентом шероховатости в диапазоне от 0,0015 до 0,0105 мм для труб диаметром 50 — 300 мм. Это характеризует трубу из полиэтилена гидравлически гладкой, создающей ничтожно малое сопротивление потоку. Соответственно системы, собранные на таких материалах менее энергоемки.

Радиус изгиба полиэтиленовых труб

Полиэтилен сочетает в себе эластичность и прочность. При монтаже трубопровода периодически возникает задача придать трубе изогнутую форму. Это позволяет сократить количество фитингов и снизить гидравлическое сопротивление системы. Но для каждого типа ПЭ труб есть предельно допустимый радиус изгиба. Он определяется температурой, при которой происходит прокладка, плотностью материала и отношением наружного диаметра к толщине стенки.

Производители ПЭ труб рекомендуют радиус изгиба в пределах 20-50d (где d — диаметр), при температуре 20°С. При снижении температуры до 0°С, минимально возможный радиус изгиба увеличивается (от 50 до 125d).

Гнуть трубу можно в холодном или горячем состоянии. Разогревать полиэтилен можно до 130°С с помощью строительного фена. В промышленных условиях применяется формовочная машина. Разогрев с помощью открытого пламени запрещен.

Предел прочности при растяжении

Способность трубы противостоять одноосному растяжению называют пределом прочности. Этот показатель указывает, при каком внешнем воздействии, в материале наступает необратимый процесс деформации. Предел текучести, в зависимости от марки ПЭ находится в диапазоне 11 — 28 МПа, а разрыв происходит при усилии, превышающем 30 МПа.

Изготовление самодельного инструмента

Ключевым элементом конструкции такого прибора является трехвальцовая система. Поэтому прежде чем приниматься за работу по самостоятельной сборке трубогиба, следует сначала разобраться, что он представляет собой в конструктивном отношении.

Итак, чтобы сделать трубогиб вручную, требуется выполнить такие действия:

  • Сначала сделайте каркас: на основе четырех швеллеров сформируйте прямоугольную раму с помощью сварочного аппарата.
  • Потом на центр привариваем кронштейн форме буквы «П», а центру ребра сверху привариваем гайку, она в будущем выступит основой для струбцин. Затем в нее вкручивается винт с маховиком, цапфа будет контактировать с вращающейся плитой, которая двигается в выемках боковых сторон кронштейна.
  • На пластину приспосабливаем валец, укрепленный между ее боковыми ножками. Прижимное усилие в этом случае будет обеспечиваться за счет штатива.
  • На боковые части кронштейна сварочным методом крепятся стержневые подпорки.
  • Для крепления цилиндров нужно брать винты. На их боковых сторонах нужно предусмотреть наличие звездочек из цепной передачи, которые можно взять со старого велосипеда.
  • В итоге цепочку надевают на подающие цилиндры. На одну из звездочек нужно установить ручку для возможности запуска вала.

Такое устройство очень простое в применении, гибка труб по радиусу с его помощью осуществляется с легкостью. Рабочий элемент укладывается на вращающиеся цилиндры, затем он фиксируется посредством деформирующего ролика, потом крепится винт. Движущаяся ручка приводит конструкцию в движение, потом она медленно проходит через деформирующие детали.

Пластиковые трубы

Сгибание пластика является довольно сложной процедурой, так как постоянно присутствует угроза повреждения материала и снижения толщины стенок. Более оптимальным решением является приобретение специального поворотного переходника. Если по какой-то причине использовать угольник не получается, процедура сгибания пластиковой трубы проводится при помощи строительного фена.

Оптимальным температурным режимом в данном случае является 140 градусов. Прогревание сгибаемого участка должно осуществляться не спеша, чтобы не допустить перегревания. Дело в том, что при температуре 175 градусов пластик обычно начинает плавиться.

После того, как изделие приобретет необходимую пластичность, его осторожно сгибают. Чтобы толщина внешних стенок не поменялась, ее обкладывают небольшим кусочками пластика, и тоже прогревают

Таким образом осуществляется их приваривание, а участок в колене получает дополнительную защиту от прорыва.

Итоги

Трубопроводы делают жизнь людей намного комфортнее и эффективнее, при чем это касается как бытовой, так и промышленной сферы. Обустраивая различные коммуникации, почти невозможно избежать поворотов и изгибов, для организации которых применяются различные приспособления и методы

В процессе работы по сгибанию труб из различных материалов очень важно избегать спешки, четко соблюдая правила гибки труб

Металлопластиковые трубы

По мере распространения металлопластиковых труб многие начали применять их во всех возможных коммуникациях. Они надежны, практичны, недороги и удобны в монтаже. Но как гнуть металлопластиковые трубы? Для этого применяют или простой ручной труд (если металл в трубе мягкий), или метод гибки при помощи пружины (он рассматривался выше). Обязательным является выполнение условия, что нельзя гнуть металлопластиковую трубу больше 15 градусов на каждые 2 сантиметра. В случае пренебрежения этим параметром труба просто может стать непригодной по причине большого количества повреждений.

Значение коэффициента К

Минимальный радиусгибаR, мм Толщина проката

S, мм

0,5 1 1,5 2 2,5 3 4 5 6 8 10
1 0,375 0,350
2 0,415 0,375 0,357 0.350
3 0,439 0,398 0,375 0,362 0,355 0,350
4 0,459 0,415 0,391 0,374 0,365 0,360 0,358
5 0,471 0,428 0,404 0,386 0,375 0,367 0,357 0,350
6 0,480 0,440 0,415 0,398 0,385 0,375 0,363 0,355 0,350
8 0,459 0,433 0,415 0,403 0,391 0,375 0,365 0,358 0,350
10 0,500 0,470 0,447 0,429 0,416 0,405 0,387 0,375 0,366 0,356 0,350
12 0,480 0,459 0,440 0,427 0,416 0,399 0,385 0,375 0,362 0,355
16 0,500 0,473 0,459 0,444 0,433 0,416 0,403 0,392 0,375 0,365
20 0,500 0,470 0,459 0,447 0,430 0,415 0,405 0,388 0,375
25 0,500 0,470 0,460 0,443 0,430 0,417 0,402 0,387
28 0,500 0,476 0,466 0,450 0,436 0,425 0,408 0,395
30 0,480 0,470 0,455 0,440 0,430 0,412 0,400

Технология гибки листового металла: особенности и классификация

Технология гибки, в зависимости от требуемой модификации листового металла, включает в себя следующие виды:

  • Одноугловая (V-образная) – считается наиболее простой. Под воздействием силы гиба верхняя поверхность заготовки сжимается, а нижняя – прилегает к стенкам механизма и растягивается. Таким образом достигается нужный радиус.
  • Двухугловая (П-образная) – выполняется схожим образом за исключением количества этапов обработки.
  • Многоугловая гибка.
  • Радиусная гибка листового металла (закатка) – позволяет получить плавный изгиб. Применяется для создания петель, хомутов и т. д.

Такая технология обработки заготовок не требует колоссального усилия, поэтому предварительного нагрева материала не требуется.

Горячая гибка по радиусу применяется лишь для толстых листовых заготовок (12–16 мм), а также малопластичных металлов. К последним относятся дюралюминий, высокоуглеродистые стали и их сплавы.

Такой способ обработки листового материала часто применяют в комплексе с другими операциями, например, резкой, вырубкой или пробивкой. В результате получаются сложные объемные изделия из металла. Для их изготовления прибегают к штампам, которые можно использовать в нескольких переходах.

С точки зрения пространственного позиционирования существует два способа гибки по радиусу:

  • Продольная – при этом используется холодная технология работ, что не позволяет обрабатывать толстые листовые заготовки.
  • Поперечная – включает в себя несколько этапов: в первую очередь загибаются кромки металлической детали, затем она нагревается. После начинаются непосредственно производственные операции: гибка, осаживание и вытяжка.

Для радиусной гибки листового металла требуется специализированный ручной или промышленный станок. Его конструкция модифицируется в зависимости от требуемой формы изделия.

Работа в холодной технике требует соблюдения оптимального соотношения радиуса изгиба, толщины металла и размера самого листа. Отступление от предельного значения чревато потерей прочностных характеристик заготовки, возможностью появления повреждений.

Придание радиусной формы заготовке под воздействием высоких температур способно изменить структуру материала. Так, во время охлаждения после нагрева связи между молекулами в листе металла становятся более тесными и упорядоченными, что способствует увеличению его твердости, прочности и упругости. Кроме того, в этот момент сокращается удлинение при разрыве. Пластичность материала изменяется мало.

Радиусы гибки листового металла

При деформировании заготовок важно знать минимальные радиусы гибки листового металла. Для каждого элемента или сплава эти показатели разные

Если их не учитывать, заготовку легко испортить.

Кроме материала, на радиус гибки влияют:

  • вид листов (отожженные, наклепанные);
  • положение линии гиба (вдоль или поперек волокон).

Минимальный радиус гибки листового металла

Для примера рассмотрим минимальные радиусы гибки металла в таблице.

Материал Отожженные Наклепанные
Линия сгиба
Поперек волокон Вдоль волокон Поперек волокон Вдоль волокон
Алюминий 0,2 0,3 0,8
Медь 0,2 1 2
Латунь Л68 0,2 0,4 0,8
Мягкий дюралюминий 1 1,5 1,5 2,5
Твердый дюралюминий 2 3 3 4
Сталь 05–08 0,2 0,2 0,5
Сталь 8–10, Ст1 и Ст2 0,4 0,4 0,8
Сталь 15–20, Ст3 0,1 0,5 0,5 1
Сталь 25–30, Ст4 0,2 0,6 0,6 1,2
Сталь 35–40, Ст5 0,3 0,8 0,8 1,5
Сталь 45–50, Ст6 0,5 1 1 1,7
Нержавеющая сталь Х18Н9Т 1 2 3 4

Максимальный радиус гибки листового металла

Понятия максимального радиуса гибки нет. Если специалист точно знает, какой минимальный радиус гибки листового металла, значит, любые более крупные варианты подходят.

Расчет радиуса гибки листового металла

Из выше написанного следует, что расчет радиуса гибки листового металла, основывается на его параметрах. В учет берется материал изготовления, толщина изделия, способ изготовления заготовки, а также пожелания заказчика. Последние напрямую зависят от того, какое изделие необходимо получить.

ГОСТ радиуса гибки листового металла

Поможет определить радиус гибки листового металла ГОСТ и другие отраслевые стандарты. Например, для листовых материалов из сталей разработан ОСТ 1 00286-78. Этот документ устанавливает расчетную формулу, необходимую для определения минимального радиуса сгиба изделий толщиной до 3 мм. А в ГОСТ 17040-80 можно найти формулу для определения минимально допустимого радиуса сгиба за одну операцию штамповки при свободной гибке материала толщиной 4 мм.

8.1 Минимально допустимый радиус гибки

Минимально допустимый радиус гибки R (рисунок 8.1.1) зависит от следующих факторов:

  • механических свойств материала изгибаемой детали;
  • угла гибки, обусловливающего напряжение растяжение внешних волокон материала;
  • направления линии гибки относительно направления волокон проката;
  • наличия заусенцев на кромках изгибаемой заготовки и их расположения.

Рисунок 8.1.1 Схема назначения радиуса и длины пригибке (автор)

Слишком малые радиусы гибки влекут за собой разрыв материала. Минимально допустимый радиус гибки определяют по формуле Rmin = Ks,

где К — коэффициент, зависящий от механических свойств металла; s — толщина материала в мм.

Как правило, рекомендуется применять оптимальные радиусы гибки: R ≤ S — для материалов толщиной S до 1, 5 мм; R ≥ 2S — для материалов толщиной свыше 1, 5 мм. Минимальные радиусы гибки следует применять лишь в случае крайней необходимости.

В таблице 8.1.1 приведены значения коэффициента К.

При гибке под углом к направлению проката надо брать промежуточные значения К, пропорцинальные углу наклона линии гибки. В случае гибки узких заготовок, полученных вырубкой или резкой без отжига, радиусы гибки нужно брать, как для наклепанного металла.

При наличии заусенцев на кромках заготовок и их расположении снаружи от угла гибки значение коэффициента К необходимо увеличивать в 1,5 раза. Поэтому, как правило, гибку следует производить заусенцами внутрь.

Таблица 8.1.1 Значения коэффициента К (Справочник мастера по штампам)

Минимальный — максимальный радиус загиба стержней (минимальный диаметр оправки) Арматура класса А500СП СТО3654501-005-2006, гладкие стержни, стержни периодического профиля, СП 63.13330.2012/СНиП5201-2003, арматура класса A-I, Bp-I, A-III Пособие к СНиП2.03.01-84.

Откроется в полном размере по клику в новом окне:

Откроется в полном размере по клику в новом окне:

Радиусы гибов труб гост

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль»

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Руководящий документ устанавливает радиусы и углы гиба труб медных по ГОСТ 617, стальных бесшовных по ГОСТ 8732 и ГОСТ 8734, бесшовных из коррозионно-стойкой стали по ГОСТ 9940 и ГОСТ 9941, стальных водогазопроводных по ГОСТ 3262, а также труб изготовленных из медных и алюминиевых сплавов.

РД не распространяется на радиусы гиба калачей, змеевиков и труб входящих в состав аппаратов компрессорных холодильных установок.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Это лофт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: