Введите данные в онлайн калькулятор для расчёта
Перед использованием калькулятора прочтите инструкцию.
Рассчитанную тепловую мощность рекомендуется увеличить на 20% для покрытия неучтенных обстоятельств, что и предусмотрено в предлагаемом расчёте. Для того, чтобы система водяного отопления правильно функционировала, необходимо обеспечить нужную скорость теплоносителя в системе.
- Скорости продвижения воды в трубопроводах рекомендуется в пределах от 0,3 до 1.5 м/сек;
- при скорости меньшей 0.3 м/сек в системе могут появляться воздушные пробки;
- при скорости большей 1.5 м/сек – гидравлические шумы. Таким образом,оптимальная скорость продвижения воды в трубопроводах находится в пределах от 0,4 до 1 м/с.
Для расчёта потерь давления кроме диаметра и длины трубопровода в нашем онлайн калькуляторе, необходимо также задать материал труб, эквивалентная шероховатость которых определяет затраты на преодоление трения жидкости о стенки труб; полученный результат умножается на коэффициент 1.2 для учета гидравлического сопротивления отводов, поворотов, кранов и других элементов трубопровода.
2 Оптимальные утеплители для трубопроводов
Классификация теплоизоляционных материалов для труб выполняется в зависимости от сферы их применения, исходя из чего выделяют:
- Утеплителя для труб канализации, дренажных и сточных труб;
- Утеплители для вентиляционных каналов, и труб систем кондиционирования;
- Утеплители для подземных магистралей горячего и холодного водоснабжения;
- Утеплители для элементов производственных линий.
В зависимости от формы материала выделяют следующие виды утеплителей:
- Рулонные и плитные как пароизоляция Изоспан;
- Напыляемые;
- Утеплители в виде полых цилиндрических гильз.
К категории рулонной теплоизоляции относится минеральная вата и фольгированный пенофол.
Схема напыляемой ППУ теплоизоляции
Минвата является идеальным утеплителем для теплоизоляции трубопроводов с высокой температурой носителя, поскольку данный материал огнеупорен, и не деформируется даже под прямым воздействием огня.
Утепляются трубы минватой посредством наматывания, и последующего закрепления утеплителя скобами, либо проволокой.
Напыляемые утеплители – это пенополистирольная пена, и жидкий пеноизол. Данные материалы эффективны и долговечны, однако у них высокая стоимость, и для нанесения пенной теплоизоляции требуется специальное оборудование.
Утеплители в виде гильз, как правило, производятся из пенопласта и вспененного полиэтилена.
Виды изоляционных материалов
Для выполнения изоляции трубопроводов используются различные материалы. Они отличаются по типу нанесения, толщине слоя и по своим характеристикам.
К выбору следует относиться внимательно. Битумные покрытия еще не так давно считались самыми востребованными. В некоторых случаях трубу может дополнительно защищать стеклохолст.
Битумные материалы используются для теплоизоляции подземных линий. Они препятствуют возникновению коррозии. Рабочие условия следующие: при обычной наружной прокладке -40/+65°C, для подземного глубинного использования -5/+30°C.
Таблица изоляции медных и стальных труб.
В целях экономии можно применять полимерно-битумные композиции. Монтаж быстрый, качество изоляции трубопровода получается высоким. ППУ – надежный и прочный материал, который может быть использован во время бесканальной или канальной прокладки коммуникаций, для надземного трубопровода.
Получается прокладка «труба в трубе». Процесс работ простой, с ним справится даже новичок. Пенополиуретан в жидком виде наносится на поверхность, после чего он застывает, образуя прочную и крепкую скорлупу.
Антикоррозионная, полиэтиленовая изоляция – это многослойное покрытие, которое наносится только в промышленных условиях.
Такие трубы применяются для транспортировки нефтепродуктов, газовых смесей. Стекловата сегодня применяется тоже часто. Это простой и надежный материал, который наносится просто.
Расчет площади проводится без особых трудностей, но необходимо учесть толщину слоя. Минеральная вата тоже отлично подходит для теплотрасс. Материал может использоваться для утепления труб с разным диаметром.
Тепловой расчет тепловой сети
Для теплового расчета примем следующие данные:
· температура воды в подающем трубопроводе 85 оС;
· температура воды в обратном трубопроводе 65 оС;
· средняя температура воздуха за отопительный период Республики Молдова +0,6 оС;
Рассчитаем потери неизолированных трубопроводов. Приближенное определение тепловых потерь на 1 m неизолированного трубопровода в зависимости от разности температур стенки трубопровода и окружающего воздуха может быть произведен по номограмме. Значение потерь тепла, определенное по номограмме, умножается на поправочные коэффициенты :
где: a — поправочный коэффициент, учитывающий разность температур, а=0,91;
b — поправка на излучение, для d=45 mm и d=76 mm b=1,07,а для d=133 mm b=1,08;
l — длина трубопровода, m.
Тепловые потери 1 m неизолированного трубопровода, определенные по номограмме:
для d=133 mm Qном=500 W/m; для d=76 mm Qном=350 W/m; для d=45 mm Qном=250 W/m.
Учитывая то, что теплопотери будут как на подающем, так и на обратном трубопроводе, то теплопотери необходимо умножить на 2:
kW.
На теплопотери опор подвесок и т.п. к теплопотерям самого неизолированного трубопровода добавляется 10%.
kW.
Нормативные значения среднегодовых тепловых потерь для тепловой сети при надземной прокладке определяются по следующим формулам :
где: , — нормативные среднегодовые тепловые потери соответственно подающего и обратного трубопроводов участков надземной прокладки, W;
,- нормативные значения удельных тепловых потерь двухтрубных водяных тепловых сетей соответственно подающего и обратного трубопровода для каждого диаметра труб при надземной прокладке, W/m, определяемые по ;
l — длина участка тепловой сети, характеризующегося одинаковым диаметром трубопроводов и типом прокладки, m;
— коэффициент местных тепловых потерь, учитывающий тепловые потери арматуры, опор и компенсаторов. Значение коэффициента в соответствии с принимается для надземной прокладки 1,25.
Расчет теплопотерь изолированных водяных трубопроводов сведен в таблицу 3.4.
Таблица 3.4 — Расчет теплопотерь изолированных водяных трубопроводов
dн, mm |
, W/m |
, W/m |
l, m |
,W |
, W |
133 |
59 |
49 |
92 |
6,79 |
5,64 |
76 |
41 |
32 |
326 |
16,71 |
13,04 |
49 |
32 |
23 |
101 |
4,04 |
2,9 |
Среднегодовая теплопотеря изолированной тепловой сети составит 49,12 kW/an.
Для оценки эффективности изоляционной конструкции часто пользуются показателем, называемым коэффициентом эффективности изоляции:
где Qг ,Qи — тепловые потери неизолированной и изолированной труб, W.
Коэффициент эффективности изоляции:
Расчет изоляционных материалов трубопроводов
Расчеты изоляции для трубопроводов провести несложно, для удобства рекомендуется пользоваться специальными калькуляторами.
Есть ряд действий, которые позволяют предварительно определить объемы материалов. Перед тем как начинать расчеты, следует сразу определиться, какой именно тип утеплителя будет использован. Изоляторы отличаются не только внешне, но и условиям укладки, свойствами.
Для изоляции трубопроводов могут применяться окрасочные вещества.
Качество материалов высокое, слой получается тонким, но прочным, полностью выполняющим все функции. Расчет делается таким образом:
Используется формула вычисления площади цилиндра S=2πr(h+r), где r – радиус основания трубы, h – параметр длины трубы, π – константа, приближенное значение для данного случая используется 3,14. Полученное значение и есть площадь окраски. Далее следует согласно инструкции производителя определить расход материала.
Схема расчета теплоизоляции для трубы.
При использовании обычных изоляционных материалов расчеты проводятся намного проще. Необходимо определить объем для внутренней части трубы и внешней. Для этого применяется формула V=πr2h, где:
- V – объем трубопровода; r – значение радиуса (внешнего или внутреннего); h – длина трубы; π равно 3,14.
Отдельно вычисляется значение внутреннего и внешнего радиуса, полученная разница и будет равна объему всего материала изоляции трубопровода. Обертывание – это вариант внешней изоляции. В данном случае расчет выполняется аналогично по первой указанной формуле, но требуется учитывать толщину материала, так как она оказывает влияние на количество.
Пример расчета
Рассчитать количество утеплителя попробуем на основе таких данных:
- периметр дома составляет 8+7+8+7=30 м (здесь 8 – размер длинной стены, 7 – короткой);
- высота стены 3 м;
- фронтон (треугольная верхняя часть меньшего фасада, образующаяся при монтаже двускатной крыши) имеет ширину 7 м и высоту 2 м;
- количество окон 10, из них 6 имеют размеры 1500х1500 мм, 4 – 1000х1500 мм;
- дверь одна, размерами 1200х2100 мм.
Важно: при расчете утеплителя (онлайн-калькулятор или вручную) площадь фронтона рассчитывается как площадь прямоугольника, а не треугольника, поскольку значительная часть термоизоляционного материала для него идет в отход за счет обрезки плит или рулонов. При расчете фронтона как треугольник потребная площадь утеплителя уменьшается, но приходится облицовывать поверхность состыкованными фрагментами плит/рулонов.. Соответственно площадь облицовки с учетом фронтона и проемов составит:
Соответственно площадь облицовки с учетом фронтона и проемов составит:
Примем в качестве теплоизолятора экструдированный пенополистирол Ursa XPS N-III-G4, который отпускается в размере 1180х600х50 мм (7 плит/4,956 м2). Для вычисленной площади облицовки потребуется (при учете, сколько квадратов в утеплителе, одна плита имеет площадь 1,08 м.кв.) 89 плит или 13 упаковок. При стоимости упаковки 1000…1100 руб. (данные для Москвы, на 13.08.2018) утепление дома обойдется в 14 тыс. рублей. Аналогично выполняются расчеты для других утеплителей (сколько квадратов минвата в виде рулона или плиты занимает или сколько утеплителя в кубе, рассчитывается в зависимости от данных производителя).
Методики расчета
Проводятся теплоизоляционные работы на трубопроводах либо по расчетам, произведенным квалифицированным инженером, либо на основании самостоятельно сделанных вычислений. Но с появлением Интернета и специализированных сайтов появился и третий вариант, представляющий собой нечто среднее между перечисленными технологиями – онлайн калькулятор.
Онлайн калькулятор
Подобные услуги бесплатные. Программа загружается на сайт, специально инсталлировать ее на собственный компьютер не требуется. Расчет будет произведен за пару минут, достаточно выбрать одну из предложенных опций (зачем утепление):
- Обеспечить необходимый уровень температуры снаружи изоляции.
- Предотвратить образование влаги на внешней стороне трассы.
- Уйти от риска замерзания содержимого.
- Обеспечить утепление двухтрубной сети, проложенной под землей.
Фрагмент из автоматической программы
Далее пойдут уточнения:
- диаметр конструкции;
- наличие защитного слоя;
- материал для утепления;
- температура.
Продолжение автоматического расчета
Самостоятельные вычисления
Шаг 1. Определение температурного сопротивления используемого материала по формуле
Определение температурного сопротивления используемого материала по формуле
где
- Из – коэффициент выбранного утеплителя;
- Dиз – диаметр теплоизоляционного слоя;
- В – коэффициент теплообмена между теплоизоляцией и воздухом;
- Dн – диаметр конструкции
Шаг 2. Расчет линейной плотности потока
Расчет линейной плотности потока
где
- tиз – температура на плоскости утеплителя;
- tн – температура на поверхности трассы.
Шаг 3. Вычисление внутренней температуры
Вычисление внутренней температуры
где
- dв – внутренний диаметр элемента;
- т – коэффициент теплопроводности утеплителя;
- г – коэффициент теплообмена между внешней средой и стенками трассы.
Шаг 4. Расчет теплового баланса (показатели с этого шага вам уже знакомы)
Расчет теплового баланса (показатели с этого шага вам уже знакомы)
Шаг 5. Определение толщины материала для утепления
Определение толщины материала для утепления
На таких же формулах базируется и онлайн калькулятор, но только вам решать, хотите ли вы проверять программу.
А вот и результат работ
Калькулятор теплоизоляции трубопроводов поможет вам сохранить нужную температуру внутри сети и продлит срок службы конструкции.
Система теплоизоляции WDVS
Вслед за странами Европы, в Российской Федерации приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение. С выходом СНиП II-3-79*, СНиП 23-02-2003 «Тепловая защита зданий» прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. Теперь прежде использовавшиеся подходы в строительстве не соответствуют новым нормативным документам, необходимо менять принципы проектирования и строительства, внедрять современные технологии.
Как показали расчёты, однослойные конструкции экономически не отвечают принятым новым нормам строительной теплотехники. К примеру, в случае использования высокой несущей способности железобетона или кирпичной кладки, для того, чтобы этим же материалом выдержать нормы теплосопротивления, толщину стен необходимо увеличить соответственно до 6 и 2,3 метров, что противоречит здравому смыслу. Если же использовать материалы с лучшими показателями по теплосопротивлению, то их несущая способность сильно ограничена, к примеру, как у газобетона и керамзитобетона, а пенополистирол и минвата, эффективные утеплители, вообще не являются конструкционными материалами. На данный момент нет абсолютного строительного материала, у которого бы была высокая несущая способность в сочетании с высоким коэффициентом теплосопротивления.
Чтобы отвечать всем нормам строительства и энергосбережения необходимо здание строить по принципу многослойных конструкций, где одна часть будет выполнять несущую функцию, вторая — тепловую защиту здания. В таком случае толщина стен остаётся разумной, соблюдается нормированное теплосопротивление стен. Системы WDVS по своим теплотехническим показателям являются самыми оптимальными из всех представленных на рынке фасадных систем.
Таблица, где: 1 — географическая точка 2 — средняя температура отопительного периода 3 — продолжительность отопительного периода в сутках 4 — градусо-сутки отопительного периода Dd, °С * сут 5 — нормируемое значение сопротивления теплопередаче Rreq, м2*°С/Вт стен 6 — требуемая толщина утеплителя
Условия выполнения расчётов для таблицы:
1. Расчёт основывается на требованиях СНиП 23-02-2003 2. За пример расчёта взята группа зданий 1 — Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития. 3. За несущую стену в таблице принимается кирпичная кладка толщиной 510 мм из глиняного обыкновенного кирпича на цементно-песчаном растворе l = 0,76 Вт/(м * °С) 4. Коэффициент теплопроводности берётся для зон А. 5. Расчётная температура внутреннего воздуха помещения + 21 °С «жилая комната в холодный период года» (ГОСТ 30494-96) 6. Rreq рассчитано по формуле Rreq=aDd+b для данного географического места 7. Расчёт: Формула расчёта общего сопротивления теплопередаче многослойных ограждений: R0= Rв + Rв.п + Rн.к + Rо.к + Rн Rв — сопротивление теплообмену у внутренней поверхности конструкции Rн — сопротивление теплообмену у наружной поверхности конструкции Rв.п — сопротивление теплопроводности воздушной прослойки (20 мм) Rн.к — сопротивление теплопроводности несущей конструкции Rо.к — сопротивление теплопроводности ограждающей конструкции R = d/l d — толщина однородного материала в м, l — коэффициент теплопроводности материала, Вт/(м * °С) R0 = 0,115 + 0,02/7,3 + 0,51/0,76 + dу/l + 0,043 = 0,832 + dу/l dу — толщина теплоизоляции R0 = Rreq Формула расчёта толщины утеплителя для данных условий: dу = l * ( Rreq — 0,832 )
а) — за среднюю толщину воздушной прослойки между стеной и теплоизоляцией принято 20 мм б) — коэффициент теплопроводности пенополистирола ПСБ-С-25Ф l = 0,039 Вт/(м * °С) (на основании протокола испытаний) в) — коэффициент теплопроводности фасадной минваты l = 0,041 Вт/(м * °С) (на основании протокола испытаний)
* в таблице даны усреднённые показатели необходимой толщины этих двух типов утеплителя.
Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий».
* для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.
Таким образом, из таблицы видно, что для того, чтобы построить здание из однородного материала, отвечающее современным требованиям теплосопротивления, к примеру, из традиционной кирпичной кладки, даже из дырчатого кирпича, толщина стен должна быть не менее 1,53 метра.
Изоляционные материалы
Гамма средств при устройстве изоляции весьма обширна. Их различие состоит как в способе нанесения на поверхности, так и по толщине слоя термоизоляции. Особенности нанесения каждого вида учтены калькуляторами для подсчета изоляции трубопроводов. По-прежнему актуально использование различных материалов на основе битума с применением дополнительных армирующих изделий, например стеклоткани или стеклохолста.
Более экономичными и прочными являются полимерно-битумные составы. Они позволяют вести быстрый монтаж а качество покрытия при этом получается долговечным и эффективным. Материал, называемый ППУ, надежен и прочен, что позволяет его применение, как для канального, так и бесканального способа прокладки магистралей. Используется также жидкий пенополиуретан, наносимой на поверхность по ходу монтажа, а также и другие материалы:
- полиэтилен как многослойная оболочка, наносится в условиях промышленного производства для гидроизоляции;
- стекловата различной толщины, эффективный утеплитель из-за своей невысокой стоимости при достаточной прочности;
- для теплотрасс эффективно используются минеральные ваты расчетной толщины для утепления труб различных диаметров.
Монтаж изоляции
Расчет количества изоляции во многом зависит от способа ее нанесения. Это зависит от места применения – для внутреннего или наружного изолирующего слоя. Его можно выполнить самостоятельно или использовать программу – калькулятор для расчета теплоизоляции трубопроводов. Покрытие по наружной поверхности используется для водяных трубопроводов горячего водоснабжения при высокой температуре с целью ее защиты от коррозии. Расчет при таком способе сводится к определению площади наружной поверхности водопровода, для определения потребности на погонный метр трубы.
Для труб для водопроводных магистралей применяется внутренняя изоляция. Основное ее назначение – защита металла от коррозии. Ее используют в виде специальных лаков или цементно-песчаной композиции слоем толщиной несколько мм. Выбор материала зависит от способа прокладки – канальный или бесканальный. В первом случае на дне отрытой траншее размещаются бетонные лотки, для размещения. Полученные желоба закрываются бетонными же крышками, после чего канал заполняется ранее вынутым грунтом.
Бесканальная прокладка используется, когда рытье теплотрассы не представляется возможным. Для этого нужно специальное инженерное оборудование. Расчет объема тепловой изоляции трубопроводов в онлайн-калькуляторах является достаточно точным средством, позволяющим рассчитать количество материалов без возни со сложными формулами. Нормы расхода материалов приводятся в соответствующих СНиП.
Расчет толщины теплоизоляции для технических, инженерных систем
ArmWin RU (Бета-версия)
Your browser does not support iframes. Ваш браузер не поддерживает встроенные окна
Страницы сайта содержат общую информацию о применении нашей продукции. В случае, если Вам необходимо правильно подобрать теплоизоляцию для конкретных условий применения и в соответствии со стандартами принятыми в Вашем регионе, пожалуйста, свяжитесь с нами, используя данные, указанные в разделе Контакты.
Все данные и техническая информация получены при испытаниях в типичных условиях эксплуатации. Получателям этой информации следует, в их же собственных интересах, уточнить в ООО «Армаселль», применима ли она в тех условиях, в которых планируется использование продукции. Данные могут меняться без предварительного предупреждения.
В настоящее время в сети имеется немало бесплатных онлайн калькулятор и сервисов, позволяющих выполнить достаточно точные расчеты строительных конструкций.
В данном обзоре вы найдете подборку расчетных программ, используя которые вы сможете быстро выполнить расчеты по теплоизоляции, огнезащиты, звукоизоляции, технической изоляции, кровли, каменным конструкциям и сэндвич-панелям.
Особенности расчета по формулам
Необходимая толщина утепляющего материала рассчитывается, применяя технико – экономический метод. В данном случае показатель толщины зависит от уровня сопротивления температурным значениям: от 0.86 ºC м² на ватт, если диаметр трубопрокатов менее двадцати пяти миллиметров, от 1.22 ºC м² на ватт при сечении трубы свыше двадцати пяти миллиметров.
Для того, чтобы рассчитать теплоизоляцию по формулам, необходимо вычислить следующие параметры:
1.наружное сечение трубопровода.
2.внутреннее сечение трубопровода.
3.показатель температуры стенки снаружи трубы.
4.показатель температуры верхней поверхности утепляющего материала.
5.значение коэффициента теплопроводности утепляющего материала.
Внимание! Данные значения необходимо подставить в инженерные формулы, чтобы получить толщину материала для утепления. Для более точного расчета лучше прибегнуть к помощи профессионалов, которые произведут подсчеты, чтобы теплоизоляция выполняла свои функции на высоком уровне. Для более точного расчета лучше прибегнуть к помощи профессионалов, которые произведут подсчеты, чтобы теплоизоляция выполняла свои функции на высоком уровне
Для более точного расчета лучше прибегнуть к помощи профессионалов, которые произведут подсчеты, чтобы теплоизоляция выполняла свои функции на высоком уровне.
Рассчитывая толщину самостоятельно, следует учитывать определенные условия эксплуатации: тип утеплителя, уровень влажности воздуха, также сезонные перепады температуры в окружающей среде.
Внимание! Необходимо учитывать показатель влажности среды, потому что при высокой влажности ускоряется процесс теплообмена, при этом уровень эффективности утеплителя снижается. К примеру, повышенная влажность отрицательно влияет на утеплитель из минеральной ваты
Калькулятор технической изоляции
Toggle navigation
- О компании
- О компании «Сен-Гобен»
- Офисы «Сен-Гобен» в РФ и СНГ
- Техническая изоляция ISOTEC
- Каменная вата
- Вата на основе кварца
- Экологическая ответственность
- Энергоэффективность
- Забота об экологии
- Повышение комфорта
- Новости
- Реализованные проекты
- Статьи
- Сферы применения
- Техническая изоляция для промышленности
- Дымоходы и вытяжные устройства
- Котлы и печи
- Оборудование и установки
- Резервуары и емкости
- Технологические трубопроводы
- Техническая изоляция для систем ОВК
- Внешняя изоляция воздуховодов
- Внутренняя изоляция воздуховодов
- Изоляция цилиндрами
- Огнезащита воздуховодов
- Самонесущие воздуховоды
- Эксплуатационные качества ОВК
- Техническая изоляция для судостроения
- Огнезащита
- ОВК и техническое оснащение
- Звукоизоляция
- Звукопоглощение
- Снижение уровня шума
- Комплектующие для других морских производств
- Эксплуатационные характеристики технической изоляции
- Высокие рабочие температуры
- Долговечность
- Защита оборудования от коррозии
- Защита персонала от ожогов
- Звукоизоляция
- Механическая прочность
- Огнезащита
- Оптимизация транспортировки
- Теплоизоляция
- Удобство монтажа
- Техническая изоляция для промышленности
- Продукция
- Библиотека
- Калькулятор
- Где купить
- Главная
- Калькулятор
Методика просчета однослойной теплоизоляционной конструкции
Основная формула расчета тепловой изоляции трубопроводов показывает зависимость между величиной потока тепла от действующей трубы, покрытой слоем утеплителя, и его толщиной. Формула применяется в том случае, если диаметр трубы меньше чем 2 м:
Формула расчета теплоизоляции труб.
ln B = 2πλ [K(tт — tо) / qL — Rн]
В этой формуле:
- λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
- K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры, некоторые значения K можно взять из Таблицы 1;
- tт — температура в градусах транспортируемой среды или теплоносителя;
- tо — температура наружного воздуха, ⁰C;
- qL — величина теплового потока, Вт/м2;
- Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.
Таблица 1
Условия прокладки трубы | Значение коэффициента К |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода до 150 мм. | 1.2 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода 150 мм и более. | 1.15 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на подвесных опорах. | 1.05 |
Неметаллические трубопроводы, проложенные на подвесных или скользящих опорах. | 1.7 |
Бесканальный способ прокладки. | 1.15 |
Значение теплопроводности утеплителя λ является справочным, в зависимости от выбранного теплоизоляционного материала. Температуру транспортируемой среды tт рекомендуется принимать как среднюю в течение года, а наружного воздуха tо как среднегодовую. Если изолируемый трубопровод проходит в помещении, то температура внешней среды задается техническим заданием на проектирование, а при его отсутствии принимается равной +20°С. Показатель сопротивления теплообмену на поверхности теплоизоляционной конструкции Rн для условий прокладки по улице можно брать из Таблицы 2.
Таблица 2
Rн,(м2 ⁰C) /Вт | DN32 | DN40 | DN50 | DN100 | DN125 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN500 | DN600 | DN700 |
tт = 100 ⁰C | 0.12 | 0.10 | 0.09 | 0.07 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.017 | 0.015 |
tт = 300 ⁰C | 0.09 | 0.07 | 0.06 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.015 | 0.013 |
tт = 500 ⁰C | 0.07 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.016 | 0.014 | 0.012 |
Примечание: величину Rн при промежуточных значениях температуры теплоносителя вычисляют методом интерполяции. Если же показатель температуры ниже 100 ⁰C, величину Rн принимают как для 100 ⁰C.
Показатель В следует рассчитывать отдельно:
Таблица тепловых потерь при разной толщине труби и теплоизоляции.
B = (dиз + 2δ) / dтр, здесь:
- dиз — наружный диаметр теплоизоляционной конструкции, м;
- dтр — наружный диаметр защищаемой трубы, м;
- δ — толщина теплоизоляционной конструкции, м.
Вычисление толщины изоляции трубопроводов начинают с определения показателя ln B, подставив в формулу значения наружных диаметров трубы и теплоизоляционной конструкции, а также толщины слоя, после чего по таблице натуральных логарифмов находят параметр ln B. Его подставляют в основную формулу вместе с показателем нормируемого теплового потока qL и производят расчет. То есть толщина теплоизоляции трубопровода должна быть такой, чтобы правая и левая часть уравнения стали тождественны. Это значение толщины и следует принимать для дальнейшей разработки.
Рассмотренный метод вычислений относился к трубопроводам, диаметр которых менее 2 м. Для труб большего диаметра расчет изоляции несколько проще и производится как для плоской поверхности и по другой формуле:
δ = [K(tт — tо) / qF — Rн]
В этой формуле:
- δ — толщина теплоизоляционной конструкции, м;
- qF — величина нормируемого теплового потока, Вт/м2;
- остальные параметры — как в расчетной формуле для цилиндрической поверхности.
2. Расчет технической изоляции
2.1. Калькулятор расчета технической изоляции от Isotec
Isotec–торговая марка известной международной компании«Сен Гобен», под которой выпускается линейка технической изоляции. Эти материалы применяются для противопожарной обработки строительных конструкций, термической изоляции трубопроводов отопления и кондиционирования, а также промышленных емкостных сооружений.
Сайт компании предлагает выполнить расчет тепловых характеристик системы при помощи . Калькулятор работает в соответствии с регламентом СП 61.13330.2012 (тепловая изоляция для оборудования и трубопроводов). Расчет выполняется на основании заданных критериев: температура поверхности трубопровода, транспортируемого потока, разница температурных характеристик по длине и так далее. Требуемые условия задаются пользователем в меню сайта.
После этого необходимо выбрать один из предлагаемых вариантов устройства теплоизоляции Isotec (например, цилиндры для трубопроводов). Программа автоматически определит толщину материала.
2. 2. Таким же образом можно произвести и расчет теплоизоляции трубопроводов с помощью уже знакомого сервиса Paroc http://calculator.paroc.ru/new/ . Все расчеты выполняются в соответствии с СП 61.13330.2012 Тепловая изоляция оборудования и трубопроводов (актуализированная редакция СНиП 41-03-2003). С его помощью можно подобрать оптимальные характеристики и тип технической изоляции. Система включает в себя различные методы расчета — по плотности теплового потока, его температуре, для предотвращения замерзания жидкости и т. д. Чтобы произвести расчет толщины теплоизоляции трубопроводов, нужно выбрать метод, ввести необходимые данные (диаметр, материал, толщина трубопровода и т.д.), после чего программа сразу же выдаст готовый результат. При этом, учитываются различные важные факторы — температура содержимого трубопровода, окружающей среды, величина механической нагрузки на трубопровод и другие. В результате, калькулятор расчета теплоизоляции трубопроводов определит толщину и объем утеплителя.